Math  /  Calculus

QuestionEvaluate the definite integral. 16(x27x)dx\int_{1}^{6}\left(\frac{x}{2}-\frac{7}{x}\right) d x \square

Studdy Solution

STEP 1

What is this asking? We need to find the definite integral of a function involving xx and 1x\frac{1}{x} from x=1x = 1 to x=6x = 6. Watch out! Don't forget to apply the upper and lower limits of integration correctly!
Also, remember the integral of 1x\frac{1}{x} is lnx\ln|x|, not just ln(x)\ln(x), but since our bounds are positive, we can just use ln(x)\ln(x).

STEP 2

1. Rewrite the integral for clarity
2. Find the indefinite integral
3. Evaluate the definite integral

STEP 3

Let's **rewrite** the integral to make it easier to work with!
We can split the integral of a sum (or difference) into the sum (or difference) of integrals.
Also, we can pull out constant factors.
So, we can rewrite our integral like this: 16(x27x)dx=1612xdx1671xdx=1216xdx7161xdx \int_{1}^{6} \left( \frac{x}{2} - \frac{7}{x} \right) dx = \int_{1}^{6} \frac{1}{2} \cdot x \, dx - \int_{1}^{6} 7 \cdot \frac{1}{x} \, dx = \frac{1}{2} \int_{1}^{6} x \, dx - 7 \int_{1}^{6} \frac{1}{x} \, dx

STEP 4

Now, let's **find** the *indefinite integral*!
Remember, the power rule for integration says xndx=xn+1n+1+C\int x^n \, dx = \frac{x^{n+1}}{n+1} + C for n1n \ne -1.
Also, 1xdx=lnx+C\int \frac{1}{x} dx = \ln|x| + C.
In our case, since the bounds of integration are positive, we can just use ln(x)\ln(x). (x27x)dx=12xdx71xdx=12x227ln(x)+C=x247ln(x)+C \int \left( \frac{x}{2} - \frac{7}{x} \right) dx = \frac{1}{2} \int x \, dx - 7 \int \frac{1}{x} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} - 7 \ln(x) + C = \frac{x^2}{4} - 7\ln(x) + C

STEP 5

Let's **evaluate** the *definite integral* using the Fundamental Theorem of Calculus!
We'll plug in our **upper limit** of integration (x=6x = 6) and **lower limit** of integration (x=1x = 1) into our indefinite integral and subtract the results. [x247ln(x)]16=(6247ln(6))(1247ln(1)) \left[ \frac{x^2}{4} - 7\ln(x) \right]_1^6 = \left( \frac{6^2}{4} - 7\ln(6) \right) - \left( \frac{1^2}{4} - 7\ln(1) \right)

STEP 6

Remember that ln(1)=0\ln(1) = 0, so we have: (3647ln(6))(140)=97ln(6)14=364147ln(6)=3547ln(6) \left( \frac{36}{4} - 7\ln(6) \right) - \left( \frac{1}{4} - 0 \right) = 9 - 7\ln(6) - \frac{1}{4} = \frac{36}{4} - \frac{1}{4} - 7\ln(6) = \frac{35}{4} - 7\ln(6)

STEP 7

Our **final answer** is 3547ln(6)\frac{35}{4} - 7\ln(6).

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord