Math  /  Calculus

QuestionEvaluate 01yln4(y2+1)y2+1dy\int_{0}^{1} \frac{y \ln ^{4}\left(y^{2}+1\right)}{y^{2}+1} d y

Studdy Solution

STEP 1

1. The integral is definite with limits from 0 to 1.
2. The integrand involves a logarithmic function and a rational function.
3. We may need to use substitution to simplify the integral.

STEP 2

1. Identify a suitable substitution to simplify the integral.
2. Change the limits of integration according to the substitution.
3. Evaluate the new integral.
4. Substitute back if necessary and compute the definite integral.

STEP 3

Identify a suitable substitution. Notice that the integrand contains ln4(y2+1) \ln^4(y^2 + 1) and y2+1 y^2 + 1 in the denominator. A good substitution is u=y2+1 u = y^2 + 1 , which simplifies the expression:
Let u=y2+1 u = y^2 + 1 . Then, du=2ydy du = 2y \, dy , or ydy=12du y \, dy = \frac{1}{2} du .

STEP 4

Change the limits of integration according to the substitution:
When y=0 y = 0 , u=02+1=1 u = 0^2 + 1 = 1 .
When y=1 y = 1 , u=12+1=2 u = 1^2 + 1 = 2 .
The new limits of integration are from u=1 u = 1 to u=2 u = 2 .

STEP 5

Substitute into the integral:
The integral becomes:
12ln4(u)u12du \int_{1}^{2} \frac{\ln^4(u)}{u} \cdot \frac{1}{2} \, du
Simplify the integral:
1212ln4(u)udu \frac{1}{2} \int_{1}^{2} \frac{\ln^4(u)}{u} \, du

STEP 6

Evaluate the integral:
The integral ln4(u)udu \int \frac{\ln^4(u)}{u} \, du can be evaluated using the substitution v=ln(u) v = \ln(u) , which gives dv=1udu dv = \frac{1}{u} \, du . Thus, the integral becomes:
v4dv \int v^4 \, dv
Evaluate this integral:
v4dv=v55+C \int v^4 \, dv = \frac{v^5}{5} + C
Substitute back v=ln(u) v = \ln(u) :
ln5(u)5 \frac{\ln^5(u)}{5}
Now evaluate the definite integral from 1 to 2:
12[ln5(u)5]12 \frac{1}{2} \left[ \frac{\ln^5(u)}{5} \right]_{1}^{2}

STEP 7

Compute the definite integral:
12(ln5(2)5ln5(1)5) \frac{1}{2} \left( \frac{\ln^5(2)}{5} - \frac{\ln^5(1)}{5} \right)
Since ln(1)=0 \ln(1) = 0 , the expression simplifies to:
12ln5(2)5=ln5(2)10 \frac{1}{2} \cdot \frac{\ln^5(2)}{5} = \frac{\ln^5(2)}{10}
The value of the integral is:
ln5(2)10 \boxed{\frac{\ln^5(2)}{10}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord