Math  /  Algebra

QuestionDirections: Find the inverse of the following functions. Be sure to show all work and use proper notation.
8. f(x)=x3x+2f(x)=\frac{x-3}{x+2}
9. h(x)=4x12x+3h(x)=\frac{4 x-1}{2 x+3} x=y3y+2x(y+2)=y3xy+2x=y32x3=yxy2x3=y(1x)y=2x31x\begin{array}{l} x=\frac{y-3}{y+2} \\ x(y+2)=y-3 \\ x y+2 x=y-3 \\ 2 x-3=y-x y \\ 2 x-3=y(1-x) \\ y=\frac{2 x-3}{1-x} \end{array} x=4y12y+3x=\frac{4 y-1}{2 y+3} x(2y+3)=4y12xy+3x=4y13x+1=4y2xy3x+1=y(42x)\begin{array}{l} x(2 y+3)=4 y-1 \\ 2 x y+3 x=4 y-1 \\ 3 x+1=4 y-2 x y \\ 3 x+1=y(4-2 x) \end{array} h(x)1=y=3x+142xh(x)^{-1}=\sqrt{y=\frac{3 x+1}{4-2 x}}
10. y=x+4x5y=\frac{x+4}{x-5}
11. g(x)=2x+13x+7g(x)=\frac{2 x+1}{3 x+7}

Studdy Solution

STEP 1

1. We are tasked with finding the inverse of given rational functions.
2. We need to show all work and use proper notation for inverse functions.

STEP 2

1. Find the inverse of f(x)=x3x+2 f(x) = \frac{x-3}{x+2} .
2. Find the inverse of h(x)=4x12x+3 h(x) = \frac{4x-1}{2x+3} .
3. Find the inverse of y=x+4x5 y = \frac{x+4}{x-5} .
4. Find the inverse of g(x)=2x+13x+7 g(x) = \frac{2x+1}{3x+7} .

STEP 3

To find the inverse of f(x)=x3x+2 f(x) = \frac{x-3}{x+2} , start by setting y=x3x+2 y = \frac{x-3}{x+2} .

STEP 4

Swap x x and y y to solve for y y :
x=y3y+2 x = \frac{y-3}{y+2}

STEP 5

Multiply both sides by y+2 y+2 to eliminate the fraction:
x(y+2)=y3 x(y+2) = y-3

STEP 6

Distribute x x on the left side:
xy+2x=y3 xy + 2x = y - 3

STEP 7

Rearrange the terms to isolate y y :
xyy=2x3 xy - y = -2x - 3
Factor out y y on the left side:
y(x1)=2x3 y(x-1) = -2x - 3

STEP 8

Solve for y y :
y=2x3x1 y = \frac{-2x - 3}{x - 1}
Thus, the inverse function is:
f1(x)=2x3x1 f^{-1}(x) = \frac{-2x - 3}{x - 1}

STEP 9

To find the inverse of h(x)=4x12x+3 h(x) = \frac{4x-1}{2x+3} , start by setting y=4x12x+3 y = \frac{4x-1}{2x+3} .

STEP 10

Swap x x and y y to solve for y y :
x=4y12y+3 x = \frac{4y-1}{2y+3}

STEP 11

Multiply both sides by 2y+3 2y+3 to eliminate the fraction:
x(2y+3)=4y1 x(2y+3) = 4y - 1

STEP 12

Distribute x x on the left side:
2xy+3x=4y1 2xy + 3x = 4y - 1

STEP 13

Rearrange the terms to isolate y y :
2xy4y=3x1 2xy - 4y = -3x - 1
Factor out y y on the left side:
y(2x4)=3x1 y(2x - 4) = -3x - 1

STEP 14

Solve for y y :
y=3x12x4 y = \frac{-3x - 1}{2x - 4}
Thus, the inverse function is:
h1(x)=3x12x4 h^{-1}(x) = \frac{-3x - 1}{2x - 4}

STEP 15

To find the inverse of y=x+4x5 y = \frac{x+4}{x-5} , start by setting y=x+4x5 y = \frac{x+4}{x-5} .

STEP 16

Swap x x and y y to solve for y y :
x=y+4y5 x = \frac{y+4}{y-5}

STEP 17

Multiply both sides by y5 y-5 to eliminate the fraction:
x(y5)=y+4 x(y-5) = y + 4

STEP 18

Distribute x x on the left side:
xy5x=y+4 xy - 5x = y + 4

STEP 19

Rearrange the terms to isolate y y :
xyy=5x+4 xy - y = 5x + 4
Factor out y y on the left side:
y(x1)=5x+4 y(x - 1) = 5x + 4

STEP 20

Solve for y y :
y=5x+4x1 y = \frac{5x + 4}{x - 1}
Thus, the inverse function is:
y1(x)=5x+4x1 y^{-1}(x) = \frac{5x + 4}{x - 1}

STEP 21

To find the inverse of g(x)=2x+13x+7 g(x) = \frac{2x+1}{3x+7} , start by setting y=2x+13x+7 y = \frac{2x+1}{3x+7} .

STEP 22

Swap x x and y y to solve for y y :
x=2y+13y+7 x = \frac{2y+1}{3y+7}

STEP 23

Multiply both sides by 3y+7 3y+7 to eliminate the fraction:
x(3y+7)=2y+1 x(3y+7) = 2y + 1

STEP 24

Distribute x x on the left side:
3xy+7x=2y+1 3xy + 7x = 2y + 1

STEP 25

Rearrange the terms to isolate y y :
3xy2y=17x 3xy - 2y = 1 - 7x
Factor out y y on the left side:
y(3x2)=17x y(3x - 2) = 1 - 7x

STEP 26

Solve for y y :
y=17x3x2 y = \frac{1 - 7x}{3x - 2}
Thus, the inverse function is:
g1(x)=17x3x2 g^{-1}(x) = \frac{1 - 7x}{3x - 2}
The inverses of the functions are:
1. f1(x)=2x3x1 f^{-1}(x) = \frac{-2x - 3}{x - 1}
2. h1(x)=3x12x4 h^{-1}(x) = \frac{-3x - 1}{2x - 4}
3. y1(x)=5x+4x1 y^{-1}(x) = \frac{5x + 4}{x - 1}
4. g1(x)=17x3x2 g^{-1}(x) = \frac{1 - 7x}{3x - 2}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord