Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

Check if the function f(x)={x21x1if x14if x=1f(x)=\left\{\begin{array}{ll} \frac{x^{2}-1}{x-1} & \text{if } x \neq 1 \\ 4 & \text{if } x=1 \end{array}\right. is continuous at a=1a=1.

STEP 1

Assumptions1. The function is defined as$$f(x)=\left\{\begin{array}{ll} \frac{x^{}-1}{x-1} & \text { if } x \neq1 \\ 4 & \text { if } x=1\end{array}\right.
$$. We are asked to determine if the function is continuous at $a=1$.

STEP 2

A function is continuous at a point aa if the following three conditions are met1. f(a)f(a) is defined.
2. limxaf(x)\lim_{x \rightarrow a} f(x) exists.
. limxaf(x)=f(a)\lim_{x \rightarrow a} f(x) = f(a).
We will check each of these conditions for the function f(x)f(x) at a=1a=1.

STEP 3

First, check if f(a)f(a) is defined. According to the function definition, f(1)=f(1) =.

STEP 4

Next, check if limxaf(x)\lim_{x \rightarrow a} f(x) exists. To do this, we need to simplify the function for x1x \neq1.
The function for x1x \neq1 is x21x1\frac{x^{2}-1}{x-1}. This can be factored as (x1)(x+1)x1\frac{(x-1)(x+1)}{x-1}.

STEP 5

implify the function by cancelling out the common factor x1x-1.
f(x)=x+1forx1f(x) = x +1 \quad \text{for} \quad x \neq1

STEP 6

Now, calculate the limit of f(x)f(x) as xx approaches 11.
limx1f(x)=limx1(x+1)\lim_{x \rightarrow1} f(x) = \lim_{x \rightarrow1} (x +1)

STEP 7

Substitute x=1x =1 into the simplified function to find the limit.
limx1f(x)=1+1=2\lim_{x \rightarrow1} f(x) =1 +1 =2

SOLUTION

Finally, check if limxaf(x)=f(a)\lim_{x \rightarrow a} f(x) = f(a).We have limx1f(x)=2\lim_{x \rightarrow1} f(x) =2 and f(1)=4f(1) =4. Since these two values are not equal, the function is not continuous at a=1a=1.
The correct answer is D. The function is not continuous at a=1a=1 because limx1f(x)f(1)\lim_{x \rightarrow1} f(x) \neq f(1).

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord