Math  /  Algebra

QuestionConsider the sequence defined recursively by a1=1,a2=1,an+1=10an1+7ana_{1}=-1, a_{2}=1, a_{n+1}=-10 a_{n-1}+7 a_{n}. We can use matrix diagonalization to find an explicit formula for ana_{n}. a. Find a matrix that satisfies [anan+1]=M[an1an]\left[\begin{array}{c}a_{n} \\ a_{n+1}\end{array}\right]=M\left[\begin{array}{c}a_{n-1} \\ a_{n}\end{array}\right] b. Find the appropriate exponent kk such that [anan+1]=Mk[a1a2]k= 媌 \begin{array}{l} {\left[\begin{array}{c} a_{n} \\ a_{n+1} \end{array}\right]=M^{k}\left[\begin{array}{l} a_{1} \\ a_{2} \end{array}\right]} \\ k=\square \text { 媌 } \end{array} c. Find a diagonal matrix DD and an invertible matrix PP such that M=PDP1M=P D P^{-1}. d. Find P1P^{-1}. e. Find M5=PD5P1M^{5}=P D^{5} P^{-1}. f. Use parts b. and e. to find a6a_{6}. a6=a_{6}= \square g. Develop an explicit formula for ana_{n} using part b. and a formula for Mk=PDkP1M^{k}=P D^{k} P^{-1}.

Studdy Solution

STEP 1

1. The sequence is defined recursively by a1=1 a_1 = -1 , a2=1 a_2 = 1 , and an+1=10an1+7an a_{n+1} = -10a_{n-1} + 7a_n .
2. We can use matrix diagonalization to find an explicit formula for an a_n .

STEP 2

1. Find the matrix M M that represents the recursive relationship.
2. Determine the exponent k k for expressing the sequence in terms of matrix powers.
3. Diagonalize the matrix M M by finding matrices D D and P P .
4. Compute the inverse of matrix P P .
5. Calculate M5 M^5 using the diagonalization.
6. Use the results to find a6 a_6 .
7. Develop an explicit formula for an a_n .

STEP 3

To find the matrix M M , we use the recursive relation an+1=10an1+7an a_{n+1} = -10a_{n-1} + 7a_n .
This can be rewritten in matrix form as: [anan+1]=[01107][an1an]\begin{bmatrix} a_{n} \\ a_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -10 & 7 \end{bmatrix} \begin{bmatrix} a_{n-1} \\ a_{n} \end{bmatrix}
Thus, the matrix M M is: M=[01107]M = \begin{bmatrix} 0 & 1 \\ -10 & 7 \end{bmatrix}

STEP 4

To express [anan+1] \begin{bmatrix} a_{n} \\ a_{n+1} \end{bmatrix} in terms of Mk M^k , we need to find the exponent k k such that: [anan+1]=Mn1[a1a2]\begin{bmatrix} a_{n} \\ a_{n+1} \end{bmatrix} = M^{n-1} \begin{bmatrix} a_{1} \\ a_{2} \end{bmatrix}
Therefore, k=n1 k = n-1 .

STEP 5

To diagonalize M M , we find the eigenvalues and eigenvectors.
The characteristic equation is given by: det(MλI)=det[λ1107λ]=λ27λ+10=0\det(M - \lambda I) = \det \begin{bmatrix} -\lambda & 1 \\ -10 & 7-\lambda \end{bmatrix} = \lambda^2 - 7\lambda + 10 = 0
Solving this quadratic equation gives the eigenvalues λ1=5 \lambda_1 = 5 and λ2=2 \lambda_2 = 2 .
Next, we find the eigenvectors for each eigenvalue.
For λ1=5 \lambda_1 = 5 : (M5I)v=[51102][xy]=[00](M - 5I) \mathbf{v} = \begin{bmatrix} -5 & 1 \\ -10 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} Solving gives v1=[15] \mathbf{v}_1 = \begin{bmatrix} 1 \\ 5 \end{bmatrix} .
For λ2=2 \lambda_2 = 2 : (M2I)v=[21105][xy]=[00](M - 2I) \mathbf{v} = \begin{bmatrix} -2 & 1 \\ -10 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} Solving gives v2=[12] \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} .
Thus, the matrix P P is: P=[1152]P = \begin{bmatrix} 1 & 1 \\ 5 & 2 \end{bmatrix}
And the diagonal matrix D D is: D=[5002]D = \begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}

STEP 6

To find P1 P^{-1} , we compute the inverse of P P : P1=1det(P)[2151]P^{-1} = \frac{1}{\det(P)} \begin{bmatrix} 2 & -1 \\ -5 & 1 \end{bmatrix}
The determinant of P P is det(P)=1(2)1(5)=3 \det(P) = 1(2) - 1(5) = -3 .
Thus: P1=13[2151]=[23135313]P^{-1} = \frac{1}{-3} \begin{bmatrix} 2 & -1 \\ -5 & 1 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{5}{3} & -\frac{1}{3} \end{bmatrix}

STEP 7

To find M5 M^5 , we compute: M5=PD5P1M^5 = P D^5 P^{-1}
First, compute D5 D^5 : D5=[550025]=[31250032]D^5 = \begin{bmatrix} 5^5 & 0 \\ 0 & 2^5 \end{bmatrix} = \begin{bmatrix} 3125 & 0 \\ 0 & 32 \end{bmatrix}
Then: M5=[1152][31250032][23135313]M^5 = \begin{bmatrix} 1 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3125 & 0 \\ 0 & 32 \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{5}{3} & -\frac{1}{3} \end{bmatrix}
Calculate the product: M5=[13125+1010+13253125+2050+232][23135313]M^5 = \begin{bmatrix} 1 \cdot 3125 + 1 \cdot 0 & 1 \cdot 0 + 1 \cdot 32 \\ 5 \cdot 3125 + 2 \cdot 0 & 5 \cdot 0 + 2 \cdot 32 \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{5}{3} & -\frac{1}{3} \end{bmatrix}
=[3125321562564][23135313]= \begin{bmatrix} 3125 & 32 \\ 15625 & 64 \end{bmatrix} \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} \\ \frac{5}{3} & -\frac{1}{3} \end{bmatrix}
Calculate the final matrix multiplication to find M5 M^5 .

STEP 8

Continue calculating the matrix product: M5=[312523+3253312513+32131562523+64531562513+6413]M^5 = \begin{bmatrix} 3125 \cdot -\frac{2}{3} + 32 \cdot \frac{5}{3} & 3125 \cdot \frac{1}{3} + 32 \cdot -\frac{1}{3} \\ 15625 \cdot -\frac{2}{3} + 64 \cdot \frac{5}{3} & 15625 \cdot \frac{1}{3} + 64 \cdot -\frac{1}{3} \end{bmatrix}
Simplify each element to find the final form of M5 M^5 .

STEP 9

Using M5 M^5 and the initial vector [a1a2]=[11] \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} , compute: [a6a7]=M5[11]\begin{bmatrix} a_6 \\ a_7 \end{bmatrix} = M^5 \begin{bmatrix} -1 \\ 1 \end{bmatrix}
Calculate the resulting vector to find a6 a_6 .

STEP 10

Develop an explicit formula for an a_n using: an=[10]Mn1[a1a2]a_n = \begin{bmatrix} 1 & 0 \end{bmatrix} M^{n-1} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}
Substitute Mn1=PDn1P1 M^{n-1} = P D^{n-1} P^{-1} to express an a_n in terms of the diagonalized form.
The explicit formula for an a_n is derived using the diagonalization approach.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord