Math  /  Calculus

QuestionConsider the function f(x)=7x48x6f(x)=\frac{7}{x^{4}}-\frac{8}{x^{6}}. Let F(x)F(x) be the antiderivative of f(x)f(x) with F(1)=0F(1)=0. Compute F(2)F(2). F(2)=F(2)= \square Submit answer Next item wers Attempt 2 of 2

Studdy Solution

STEP 1

1. We are given the function f(x)=7x48x6 f(x) = \frac{7}{x^4} - \frac{8}{x^6} .
2. F(x) F(x) is the antiderivative of f(x) f(x) .
3. We know that F(1)=0 F(1) = 0 .
4. We need to compute F(2) F(2) .

STEP 2

1. Rewrite f(x) f(x) in a form suitable for integration.
2. Find the antiderivative F(x) F(x) .
3. Use the initial condition F(1)=0 F(1) = 0 to solve for the constant of integration.
4. Evaluate F(2) F(2) .

STEP 3

Rewrite f(x) f(x) in terms of negative exponents:
f(x)=7x48x6 f(x) = 7x^{-4} - 8x^{-6}

STEP 4

Integrate f(x) f(x) to find F(x) F(x) :
F(x)=(7x48x6)dx F(x) = \int (7x^{-4} - 8x^{-6}) \, dx
Integrate each term separately:
F(x)=7x4dx8x6dx F(x) = 7 \int x^{-4} \, dx - 8 \int x^{-6} \, dx

STEP 5

Compute the integrals:
x4dx=x33=13x3 \int x^{-4} \, dx = \frac{x^{-3}}{-3} = -\frac{1}{3}x^{-3}
x6dx=x55=15x5 \int x^{-6} \, dx = \frac{x^{-5}}{-5} = -\frac{1}{5}x^{-5}
Substitute back into the expression for F(x) F(x) :
F(x)=7(13x3)8(15x5) F(x) = 7 \left(-\frac{1}{3}x^{-3}\right) - 8 \left(-\frac{1}{5}x^{-5}\right)
F(x)=73x3+85x5+C F(x) = -\frac{7}{3}x^{-3} + \frac{8}{5}x^{-5} + C

STEP 6

Use the initial condition F(1)=0 F(1) = 0 to solve for C C :
F(1)=73(1)3+85(1)5+C=0 F(1) = -\frac{7}{3}(1)^{-3} + \frac{8}{5}(1)^{-5} + C = 0
73+85+C=0 -\frac{7}{3} + \frac{8}{5} + C = 0
Find a common denominator and solve for C C :
3515+2415+C=0 -\frac{35}{15} + \frac{24}{15} + C = 0
1115+C=0 -\frac{11}{15} + C = 0
C=1115 C = \frac{11}{15}

STEP 7

Substitute C C back into F(x) F(x) :
F(x)=73x3+85x5+1115 F(x) = -\frac{7}{3}x^{-3} + \frac{8}{5}x^{-5} + \frac{11}{15}
Evaluate F(2) F(2) :
F(2)=73(2)3+85(2)5+1115 F(2) = -\frac{7}{3}(2)^{-3} + \frac{8}{5}(2)^{-5} + \frac{11}{15}
Calculate each term:
(2)3=18,(2)5=132 (2)^{-3} = \frac{1}{8}, \quad (2)^{-5} = \frac{1}{32}
F(2)=7318+85132+1115 F(2) = -\frac{7}{3} \cdot \frac{1}{8} + \frac{8}{5} \cdot \frac{1}{32} + \frac{11}{15}
F(2)=724+120+1115 F(2) = -\frac{7}{24} + \frac{1}{20} + \frac{11}{15}
Find a common denominator and compute:
F(2)=35120+6120+88120 F(2) = -\frac{35}{120} + \frac{6}{120} + \frac{88}{120}
F(2)=35+6+88120 F(2) = \frac{-35 + 6 + 88}{120}
F(2)=59120 F(2) = \frac{59}{120}
The value of F(2) F(2) is:
59120 \boxed{\frac{59}{120}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord