Math  /  Trigonometry

QuestionConsider the following triangles to determine the exact values of the trigonometric functions. (Hint: Leave as is, no need to simplify.) (a) cos(α)=\cos (\alpha)= \qquad (b) cos(β)=\cos (\beta)= \qquad (c) sin(α)=\sin (\alpha)= \qquad (d) sin(β)=\sin (\beta)= \qquad (d) sin(α+β)=\sin (\alpha+\beta)= \qquad (e) sin(2β)=\sin (2 \beta)= \qquad

Studdy Solution

STEP 1

What is this asking? We need to find the *exact* values of cosine and sine for angles α\alpha and β\beta, and then find sin(α+β)\sin(\alpha + \beta) and sin(2β)\sin(2\beta). Watch out! Remember **SOH CAH TOA** for right triangles!
Also, don't forget your trigonometric identities for sin(α+β)\sin(\alpha + \beta) and sin(2β)\sin(2\beta)!

STEP 2

1. Find Cosine and Sine of Alpha
2. Find Cosine and Sine of Beta
3. Find Sine of Alpha Plus Beta
4. Find Sine of Two Beta

STEP 3

Let's **start** with cos(α)\cos(\alpha).
Remember **CAH**: Cosine is **Adjacent** over **Hypotenuse**.
Looking at the triangle with angle α\alpha, the **adjacent** side is **8** and the **hypotenuse** is **10**.

STEP 4

So, cos(α)=AdjacentHypotenuse=810\cos(\alpha) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{8}{10}

STEP 5

Now for sin(α)\sin(\alpha).
Remember **SOH**: Sine is **Opposite** over **Hypotenuse**.
The **opposite** side to α\alpha is **6** and the **hypotenuse** is still **10**.

STEP 6

Therefore, sin(α)=OppositeHypotenuse=610\sin(\alpha) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{6}{10}

STEP 7

Time for cos(β)\cos(\beta)! **Adjacent** over **Hypotenuse**.
For angle β\beta, the **adjacent** side is **3** and the **hypotenuse** is **5**.

STEP 8

So, cos(β)=AdjacentHypotenuse=35\cos(\beta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{3}{5}

STEP 9

And for sin(β)\sin(\beta), **opposite** over **hypotenuse**.
The **opposite** side is **4** and the **hypotenuse** is **5**.

STEP 10

Thus, sin(β)=OppositeHypotenuse=45\sin(\beta) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{4}{5}

STEP 11

Remember the **sum formula**: sin(α+β)=sin(α)cos(β)+cos(α)sin(β)\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta).
We already found all these values, so let's **plug them in**!

STEP 12

We found sin(α)=610\sin(\alpha) = \frac{6}{10}, cos(α)=810\cos(\alpha) = \frac{8}{10}, sin(β)=45\sin(\beta) = \frac{4}{5}, and cos(β)=35\cos(\beta) = \frac{3}{5}.

STEP 13

Substituting these values, we get: sin(α+β)=(610)(35)+(810)(45)\sin(\alpha + \beta) = \left(\frac{6}{10}\right)\left(\frac{3}{5}\right) + \left(\frac{8}{10}\right)\left(\frac{4}{5}\right)

STEP 14

sin(α+β)=1850+3250=18+3250=5050\sin(\alpha + \beta) = \frac{18}{50} + \frac{32}{50} = \frac{18 + 32}{50} = \frac{50}{50}

STEP 15

For sin(2β)\sin(2\beta), we use the **double angle formula**: sin(2β)=2sin(β)cos(β)\sin(2\beta) = 2\sin(\beta)\cos(\beta).

STEP 16

We already know sin(β)=45\sin(\beta) = \frac{4}{5} and cos(β)=35\cos(\beta) = \frac{3}{5}, so let's **substitute**!

STEP 17

sin(2β)=2(45)(35)\sin(2\beta) = 2 \cdot \left(\frac{4}{5}\right)\left(\frac{3}{5}\right)

STEP 18

sin(2β)=24355=2425\sin(2\beta) = \frac{2 \cdot 4 \cdot 3}{5 \cdot 5} = \frac{24}{25}

STEP 19

(a) cos(α)=810\cos(\alpha) = \frac{8}{10} (b) cos(β)=35\cos(\beta) = \frac{3}{5} (c) sin(α)=610\sin(\alpha) = \frac{6}{10} (d) sin(β)=45\sin(\beta) = \frac{4}{5} (e) sin(α+β)=5050\sin(\alpha + \beta) = \frac{50}{50} (f) sin(2β)=2425\sin(2\beta) = \frac{24}{25}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord