Math

QuestionUse the function f(x)=x5f(x)=\sqrt{x-5} to find f(x)f(x) for x=1,5,86,105x=1, 5, 86, 105. Simplify where possible.

Studdy Solution

STEP 1

Assumptions1. The function rule is f(x)=x5f(x)=\sqrt{x-5} . The values of xx we need to evaluate are1,5,86, and1053. If the value under the square root is negative, the result is not a real number

STEP 2

We need to substitute the values of xx into the function rule to find the corresponding f(x)f(x) values.

STEP 3

First, let's substitute x=1x=1 into the function rule.
f(1)=15f(1)=\sqrt{1-5}

STEP 4

implify the expression under the square root.
f(1)=4f(1)=\sqrt{-4}

STEP 5

Since the value under the square root is negative, f(1)f(1) is not a real number.

STEP 6

Next, let's substitute x=5x=5 into the function rule.
f(5)=55f(5)=\sqrt{5-5}

STEP 7

implify the expression under the square root.
f(5)=0f(5)=\sqrt{0}

STEP 8

Calculate the square root of0.
f(5)=0f(5)=0

STEP 9

Next, let's substitute x=86x=86 into the function rule.
f(86)=865f(86)=\sqrt{86-5}

STEP 10

implify the expression under the square root.
f(86)=81f(86)=\sqrt{81}

STEP 11

Calculate the square root of81.
f(86)=9f(86)=9

STEP 12

Finally, let's substitute x=105x=105 into the function rule.
f(105)=1055f(105)=\sqrt{105-5}

STEP 13

implify the expression under the square root.
f(105)=100f(105)=\sqrt{100}

STEP 14

Calculate the square root of100.
f(105)=10f(105)=10

STEP 15

Now we can fill in the table with the calculated f(x)f(x) values.
\begin{tabular}{|c|c|} \hlinexx & f(x)f(x) \\ \hline & Not a real number \\ \hline5 &0 \\ \hline86 &9 \\ \hline105 &10 \\ \hline\end{tabular}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord