Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

Calculate the value of the following limit:
limn3n2+n3n25n\lim _{n \rightarrow \infty} \sqrt{3 n^{2}+n}-\sqrt{3 n^{2}-5 n}

STEP 1

1. The limit involves expressions with square roots and polynomial terms.
2. As n n approaches infinity, the dominant terms in the square roots will determine the behavior of the expression.
3. Rationalizing the expression may help simplify the limit calculation.

STEP 2

1. Simplify the expression by rationalizing the difference of square roots.
2. Evaluate the limit of the simplified expression as n n approaches infinity.

STEP 3

To simplify the expression, multiply and divide by the conjugate of the square roots:
limn(3n2+n3n25n)\lim _{n \rightarrow \infty} \left( \sqrt{3 n^{2}+n} - \sqrt{3 n^{2}-5 n} \right) Multiply and divide by the conjugate:
limn(3n2+n3n25n)(3n2+n+3n25n)3n2+n+3n25n\lim _{n \rightarrow \infty} \frac{\left( \sqrt{3 n^{2}+n} - \sqrt{3 n^{2}-5 n} \right) \left( \sqrt{3 n^{2}+n} + \sqrt{3 n^{2}-5 n} \right)}{\sqrt{3 n^{2}+n} + \sqrt{3 n^{2}-5 n}}

STEP 4

Simplify the numerator using the difference of squares formula:
(3n2+n)2(3n25n)2=(3n2+n)(3n25n)\left( \sqrt{3 n^{2}+n} \right)^2 - \left( \sqrt{3 n^{2}-5 n} \right)^2 = (3 n^{2} + n) - (3 n^{2} - 5 n) Simplify further:
=3n2+n3n2+5n=6n= 3n^{2} + n - 3n^{2} + 5n = 6n The expression becomes:
limn6n3n2+n+3n25n\lim _{n \rightarrow \infty} \frac{6n}{\sqrt{3 n^{2}+n} + \sqrt{3 n^{2}-5 n}}

STEP 5

Factor out n n from the square roots in the denominator:
3n2+n=n3+1n\sqrt{3 n^{2}+n} = n\sqrt{3 + \frac{1}{n}} 3n25n=n35n\sqrt{3 n^{2}-5 n} = n\sqrt{3 - \frac{5}{n}} The expression becomes:
limn6nn(3+1n+35n)\lim _{n \rightarrow \infty} \frac{6n}{n\left(\sqrt{3 + \frac{1}{n}} + \sqrt{3 - \frac{5}{n}}\right)} Cancel n n in the numerator and denominator:
limn63+1n+35n\lim _{n \rightarrow \infty} \frac{6}{\sqrt{3 + \frac{1}{n}} + \sqrt{3 - \frac{5}{n}}}

SOLUTION

Evaluate the limit as n n \rightarrow \infty :
As n n \rightarrow \infty , 1n0 \frac{1}{n} \rightarrow 0 and 5n0 \frac{5}{n} \rightarrow 0 , so:
3+1n3\sqrt{3 + \frac{1}{n}} \rightarrow \sqrt{3} 35n3\sqrt{3 - \frac{5}{n}} \rightarrow \sqrt{3} Thus, the expression simplifies to:
limn63+3=623=33=3\lim _{n \rightarrow \infty} \frac{6}{\sqrt{3} + \sqrt{3}} = \frac{6}{2\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} The value of the limit is:
3 \boxed{\sqrt{3}}

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord