Math

QuestionFind u+v\mathbf{u}+\mathbf{v} and u3v\mathbf{u}-3 \mathbf{v} for u=[36]u=\begin{bmatrix}-3 \\ 6\end{bmatrix} and v=[54]v=\begin{bmatrix}-5 \\ 4\end{bmatrix}.

Studdy Solution

STEP 1

Assumptions1. The vectors are u=[36]\mathbf{u}=\left[\begin{array}{r} -3 \\ 6\end{array}\right] and v=[54]\mathbf{v}=\left[\begin{array}{r} -5 \\ 4\end{array}\right] . We are asked to compute u+v\mathbf{u}+\mathbf{v} and u3v\mathbf{u}-3\mathbf{v}

STEP 2

First, let's compute u+v\mathbf{u}+\mathbf{v}. To do this, we add the corresponding elements in each vector.
u+v=[u1+v1u2+v2]\mathbf{u}+\mathbf{v} = \left[\begin{array}{r} u1 + v1 \\ u2 + v2\end{array}\right]

STEP 3

Now, plug in the given values for u1,u2,v1,v2u1, u2, v1, v2 to calculate u+v\mathbf{u}+\mathbf{v}.
u+v=[3+(5)6+]\mathbf{u}+\mathbf{v} = \left[\begin{array}{r} -3 + (-5) \\ 6 +\end{array}\right]

STEP 4

Calculate the sum of the vectors.
u+v=[810]\mathbf{u}+\mathbf{v} = \left[\begin{array}{r} -8 \\ 10\end{array}\right]

STEP 5

Next, let's compute u3v\mathbf{u}-3\mathbf{v}. To do this, we first multiply the vector v\mathbf{v} by3 and then subtract the result from u\mathbf{u}.
u3v=[u13v1u23v2]\mathbf{u}-3\mathbf{v} = \left[\begin{array}{r} u1 -3v1 \\ u2 -3v2\end{array}\right]

STEP 6

Now, plug in the given values for u1,u2,v1,v2u1, u2, v1, v2 to calculate u3v\mathbf{u}-3\mathbf{v}.
u3v=[33(5)63(4)]\mathbf{u}-3\mathbf{v} = \left[\begin{array}{r} -3 -3(-5) \\ 6 -3(4) \end{array}\right]

STEP 7

Calculate the result of the operation.
u3v=[126]\mathbf{u}-3\mathbf{v} = \left[\begin{array}{r} 12 \\ -6\end{array}\right]So, u+v=[10]\mathbf{u}+\mathbf{v} = \left[\begin{array}{r} - \\ 10\end{array}\right] and u3v=[126]\mathbf{u}-3\mathbf{v} = \left[\begin{array}{r} 12 \\ -6\end{array}\right]

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord