Math  /  Calculus

Question(c) Estimate 04(x2+1)dx\int_{0}^{4}\left(x^{2}+1\right) d x using a right-hand sum with n=3n=3 (i.e. R3)\left.R_{3}\right).
Round your answer to two decimal places. R3=R_{3}= \square

Studdy Solution

STEP 1

1. We are estimating the integral 04(x2+1)dx\int_{0}^{4}(x^{2}+1) \, dx.
2. We are using a right-hand Riemann sum with n=3n=3.
3. The interval [0,4][0, 4] is divided into 3 equal subintervals.

STEP 2

1. Determine the width of each subinterval.
2. Identify the right endpoints of each subinterval.
3. Evaluate the function at each right endpoint.
4. Calculate the right-hand sum R3R_3.
5. Round the result to two decimal places.

STEP 3

Calculate the width of each subinterval Δx\Delta x:
Δx=ban=403=43\Delta x = \frac{b-a}{n} = \frac{4-0}{3} = \frac{4}{3}

STEP 4

Identify the right endpoints of each subinterval. Since Δx=43\Delta x = \frac{4}{3}, the right endpoints are:
x1=43,x2=83,x3=4x_1 = \frac{4}{3}, \quad x_2 = \frac{8}{3}, \quad x_3 = 4

STEP 5

Evaluate the function f(x)=x2+1f(x) = x^2 + 1 at each right endpoint:
f(43)=(43)2+1=169+1=259f\left(\frac{4}{3}\right) = \left(\frac{4}{3}\right)^2 + 1 = \frac{16}{9} + 1 = \frac{25}{9}
f(83)=(83)2+1=649+1=739f\left(\frac{8}{3}\right) = \left(\frac{8}{3}\right)^2 + 1 = \frac{64}{9} + 1 = \frac{73}{9}
f(4)=42+1=16+1=17f(4) = 4^2 + 1 = 16 + 1 = 17

STEP 6

Calculate the right-hand sum R3R_3:
R3=Δx(f(43)+f(83)+f(4))R_3 = \Delta x \left(f\left(\frac{4}{3}\right) + f\left(\frac{8}{3}\right) + f(4)\right)
R3=43(259+739+17)R_3 = \frac{4}{3} \left(\frac{25}{9} + \frac{73}{9} + 17\right)
Convert 17 to a fraction with denominator 9:
17=153917 = \frac{153}{9}
R3=43(259+739+1539)R_3 = \frac{4}{3} \left(\frac{25}{9} + \frac{73}{9} + \frac{153}{9}\right)
R3=43(2519)R_3 = \frac{4}{3} \left(\frac{251}{9}\right)
R3=4×25127R_3 = \frac{4 \times 251}{27}
R3=100427R_3 = \frac{1004}{27}

STEP 7

Convert 100427\frac{1004}{27} to a decimal and round to two decimal places:
R337.19R_3 \approx 37.19
The estimated value of the integral using the right-hand sum R3R_3 is:
37.19\boxed{37.19}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord