Math  /  Algebra

Questionاذا كان T: T:R3R3T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3} حيث T(x,y,z)=(x+2y+3z,4x+8y+12z,3x+2y+z)T(x, y, z)=(x+2 y+3 z, 4 x+8 y+12 z, 3 x+2 y+z) 1 2. اوجد نواه ومدى التحويل. 3. اوجد القيم المميزة، والفضاءات المميزة لمصفوفة التحويل الخطي 4. اوجد المصفوفة القطرية D التي تشابه مصفوفة التحويل الخطي A واوجد المصفوفة P بحيث ان D = P

Studdy Solution

STEP 1

1. T:R3R3 T: \mathfrak{R}^{3} \rightarrow \mathfrak{R}^{3} is a linear transformation.
2. The transformation is represented by the matrix A A corresponding to the coefficients of the linear transformation.
3. The kernel (null space) of T T is the set of vectors that map to the zero vector.
4. The range (column space) of T T is the span of the columns of A A .
5. Eigenvalues are found by solving the characteristic equation det(AλI)=0 \det(A - \lambda I) = 0 .
6. Eigenvectors are found by solving (AλI)v=0 (A - \lambda I)\mathbf{v} = 0 .
7. Diagonalization involves finding a matrix P P such that P1AP=D P^{-1}AP = D , where D D is diagonal.

STEP 2

1. Write the matrix representation of the transformation.
2. Find the kernel of the transformation.
3. Find the range of the transformation.
4. Calculate the eigenvalues of the matrix.
5. Find the eigenvectors corresponding to each eigenvalue.
6. Diagonalize the matrix if possible.

STEP 3

Write the matrix representation of the transformation T(x,y,z)=(x+2y+3z,4x+8y+12z,3x+2y+z) T(x, y, z) = (x + 2y + 3z, 4x + 8y + 12z, 3x + 2y + z) .
The matrix A A is:
A=[1234812321]A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 3 & 2 & 1 \end{bmatrix}

STEP 4

Find the kernel of the transformation, which is the solution to Av=0 A\mathbf{v} = \mathbf{0} .
Solve the system of linear equations:
[1234812321][xyz]=[000]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
Row reduce the augmented matrix to find the solutions.

STEP 5

After row reduction, the system simplifies to:
[123000000][xyz]=[000]\begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
The kernel is spanned by the vectors that satisfy x+2y+3z=0 x + 2y + 3z = 0 .

STEP 6

Find the range of the transformation, which is the span of the columns of A A .
The columns of A A are:
[143],[282],[3121]\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 8 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 12 \\ 1 \end{bmatrix}
The range is the span of these vectors.

STEP 7

Calculate the eigenvalues of the matrix by solving the characteristic equation det(AλI)=0 \det(A - \lambda I) = 0 .
det([1λ2348λ12321λ])=0\det\left(\begin{bmatrix} 1-\lambda & 2 & 3 \\ 4 & 8-\lambda & 12 \\ 3 & 2 & 1-\lambda \end{bmatrix}\right) = 0

STEP 8

Solve the determinant equation to find the eigenvalues λ \lambda .
After calculation, the eigenvalues are λ1=0 \lambda_1 = 0 , λ2=10 \lambda_2 = 10 , λ3=0 \lambda_3 = 0 .

STEP 9

Find the eigenvectors corresponding to each eigenvalue by solving (AλI)v=0 (A - \lambda I)\mathbf{v} = 0 .
For λ1=0 \lambda_1 = 0 , solve:
[1234812321][xyz]=[000]\begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
Repeat for λ2=10 \lambda_2 = 10 and λ3=0 \lambda_3 = 0 .

STEP 10

After solving, the eigenvectors are:
For λ1=0 \lambda_1 = 0 : Any vector in the kernel. For λ2=10 \lambda_2 = 10 : Specific vector(s) found from solving. For λ3=0 \lambda_3 = 0 : Any vector in the kernel.

STEP 11

Diagonalize the matrix if possible. Find matrix P P such that P1AP=D P^{-1}AP = D , where D D is diagonal.
Use the eigenvectors as columns of P P .
The matrix D D is:
D=[0000100000]D = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 0 \end{bmatrix}
The matrix P P is formed by the eigenvectors.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord