Math  /  Calculus

QuestionApproximate 214x2dx\int_{2}^{14} x^{2} d x using each of the following Riemann sums with 4 subintervals of equal length. Do not simplify your answer. (a) Left Riemann Sum = \square (b) Right Riemann Sum = \square (c) Midpoint Rule == \square

Studdy Solution

STEP 1

1. We are approximating the integral 214x2dx\int_{2}^{14} x^{2} dx.
2. We will use Riemann sums with 4 subintervals of equal length.
3. We will calculate the Left Riemann Sum, Right Riemann Sum, and Midpoint Rule.

STEP 2

1. Determine the width of each subinterval.
2. Calculate the Left Riemann Sum.
3. Calculate the Right Riemann Sum.
4. Calculate the Midpoint Rule.

STEP 3

Determine the width of each subinterval:
The interval from 22 to 1414 is divided into 4 subintervals, so the width Δx\Delta x is:
Δx=1424=3\Delta x = \frac{14 - 2}{4} = 3

STEP 4

Calculate the Left Riemann Sum:
The left endpoints of the subintervals are x0=2x_0 = 2, x1=5x_1 = 5, x2=8x_2 = 8, x3=11x_3 = 11.
The Left Riemann Sum is:
Left Riemann Sum=Δx[f(x0)+f(x1)+f(x2)+f(x3)]\text{Left Riemann Sum} = \Delta x \left[ f(x_0) + f(x_1) + f(x_2) + f(x_3) \right]
Substitute the function values:
=3[(2)2+(5)2+(8)2+(11)2]= 3 \left[ (2)^2 + (5)^2 + (8)^2 + (11)^2 \right]

STEP 5

Calculate the Right Riemann Sum:
The right endpoints of the subintervals are x1=5x_1 = 5, x2=8x_2 = 8, x3=11x_3 = 11, x4=14x_4 = 14.
The Right Riemann Sum is:
Right Riemann Sum=Δx[f(x1)+f(x2)+f(x3)+f(x4)]\text{Right Riemann Sum} = \Delta x \left[ f(x_1) + f(x_2) + f(x_3) + f(x_4) \right]
Substitute the function values:
=3[(5)2+(8)2+(11)2+(14)2]= 3 \left[ (5)^2 + (8)^2 + (11)^2 + (14)^2 \right]

STEP 6

Calculate the Midpoint Rule:
The midpoints of the subintervals are x0=3.5x_0 = 3.5, x1=6.5x_1 = 6.5, x2=9.5x_2 = 9.5, x3=12.5x_3 = 12.5.
The Midpoint Rule is:
Midpoint Rule=Δx[f(x0)+f(x1)+f(x2)+f(x3)]\text{Midpoint Rule} = \Delta x \left[ f(x_0) + f(x_1) + f(x_2) + f(x_3) \right]
Substitute the function values:
=3[(3.5)2+(6.5)2+(9.5)2+(12.5)2]= 3 \left[ (3.5)^2 + (6.5)^2 + (9.5)^2 + (12.5)^2 \right]
The approximations are: (a) Left Riemann Sum = 3[(2)2+(5)2+(8)2+(11)2]3 \left[ (2)^2 + (5)^2 + (8)^2 + (11)^2 \right] (b) Right Riemann Sum = 3[(5)2+(8)2+(11)2+(14)2]3 \left[ (5)^2 + (8)^2 + (11)^2 + (14)^2 \right] (c) Midpoint Rule = 3[(3.5)2+(6.5)2+(9.5)2+(12.5)2]3 \left[ (3.5)^2 + (6.5)^2 + (9.5)^2 + (12.5)^2 \right]

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord