Math  /  Algebra

QuestionANS: x(1,5)18;+x \in(1,5) \cup 18 ;+
3. If S(N)=k=1NkS(N)=\sum_{k=1}^{N} k then which value of NN solves the following equation? n=1S(N)4n=43(4551)\sum_{n=1}^{S(N)} 4^{n}=\frac{4}{3}\left(4^{55}-1\right)

ANS: N=10N=10

Studdy Solution

STEP 1

1. The function S(N)=k=1Nk S(N) = \sum_{k=1}^{N} k represents the sum of the first N N natural numbers.
2. The equation involves a geometric series on the left-hand side.
3. We need to find the value of N N such that the sum of powers of 4 equals the given expression.

STEP 2

1. Express S(N) S(N) in terms of N N .
2. Recognize and simplify the geometric series.
3. Solve for N N .

STEP 3

First, express S(N) S(N) in terms of N N . The sum of the first N N natural numbers is given by:
S(N)=N(N+1)2 S(N) = \frac{N(N+1)}{2}

STEP 4

Recognize that the left-hand side of the equation is a geometric series:
n=1S(N)4n=4+42+43++4S(N) \sum_{n=1}^{S(N)} 4^n = 4 + 4^2 + 4^3 + \ldots + 4^{S(N)}
The sum of a geometric series is given by:
Sum=arn1r1 \text{Sum} = a \frac{r^n - 1}{r - 1}
where a=4 a = 4 , r=4 r = 4 , and n=S(N) n = S(N) . So we have:
n=1S(N)4n=44S(N)141=4S(N)+143 \sum_{n=1}^{S(N)} 4^n = 4 \frac{4^{S(N)} - 1}{4 - 1} = \frac{4^{S(N)+1} - 4}{3}

STEP 5

Set the geometric series equal to the given expression and solve for S(N) S(N) :
4S(N)+143=43(4551) \frac{4^{S(N)+1} - 4}{3} = \frac{4}{3}(4^{55} - 1)
Multiply both sides by 3 to eliminate the fraction:
4S(N)+14=4(4551) 4^{S(N)+1} - 4 = 4(4^{55} - 1)
Simplify the right-hand side:
4S(N)+14=4564 4^{S(N)+1} - 4 = 4^{56} - 4
Since the terms involving 4-4 cancel out, we equate the exponents:
S(N)+1=56 S(N)+1 = 56
S(N)=55 S(N) = 55

STEP 6

Substitute S(N)=55 S(N) = 55 into the expression for S(N) S(N) :
N(N+1)2=55 \frac{N(N+1)}{2} = 55
Multiply both sides by 2:
N(N+1)=110 N(N+1) = 110
Solve the quadratic equation:
N2+N110=0 N^2 + N - 110 = 0
Using the quadratic formula N=b±b24ac2a N = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} , where a=1 a = 1 , b=1 b = 1 , and c=110 c = -110 :
N=1±1+4402 N = \frac{-1 \pm \sqrt{1 + 440}}{2} N=1±4412 N = \frac{-1 \pm \sqrt{441}}{2} N=1±212 N = \frac{-1 \pm 21}{2}
The positive solution is:
N=202=10 N = \frac{20}{2} = 10
The value of N N is:
10 \boxed{10}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord