Math

QuestionA scientist measures 218kg218 \mathrm{kg}; the true value is 200kg200 \mathrm{kg}. Find absolute and relative error.

Studdy Solution

STEP 1

Assumptions1. The measured value is 218kg218\,kg . The true value is 200kg200\,kg

STEP 2

First, we need to calculate the absolute error. The absolute error is the absolute difference between the true value and the measured value.
Absoluteerror=MeasuredvalueTruevalueAbsolute\, error = |Measured\, value - True\, value|

STEP 3

Now, plug in the given values for the measured value and true value to calculate the absolute error.
Absoluteerror=218kg200kgAbsolute\, error = |218\,kg -200\,kg|

STEP 4

Calculate the absolute error.
Absoluteerror=218kg200kg=18kgAbsolute\, error = |218\,kg -200\,kg| =18\,kg

STEP 5

Next, we need to calculate the relative error. The relative error is the absolute error divided by the true value.
Relativeerror=AbsoluteerrorTruevalueRelative\, error = \frac{Absolute\, error}{True\, value}

STEP 6

Now, plug in the values for the absolute error and the true value to calculate the relative error.
Relativeerror=18kg200kgRelative\, error = \frac{18\,kg}{200\,kg}

STEP 7

Calculate the relative error. The result is a decimal value, which can be converted to a percentage by multiplying by100.
Relativeerror=18kg200kg=0.09Relative\, error = \frac{18\,kg}{200\,kg} =0.09Relativeerror=0.09×100=9%Relative\, error =0.09 \times100 =9\%The absolute error is 18kg18\,kg and the relative error is 9%9\%.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord