Math  /  Data & Statistics

QuestionA random sample of 40 students has a mean annual earnings of $3120\$ 3120 and assume that the population standard deviation is $677\$ 677. Construct the confidence interval for the population mean, μ\mu if c=0.95\mathrm{c}=0.95. A. ($4812,$5342)(\$ 4812, \$ 5342) B. ($210,$110)(\$ 210, \$ 110) C. ($1987,$2346)(\$ 1987, \$ 2346) D. ($2910,$3330)(\$ 2910, \$ 3330)

Studdy Solution

STEP 1

1. The sample size is n=40 n = 40 .
2. The sample mean is xˉ=3120 \bar{x} = 3120 .
3. The population standard deviation is σ=677 \sigma = 677 .
4. The confidence level is c=0.95 c = 0.95 .

STEP 2

1. Determine the z-score for the given confidence level.
2. Calculate the standard error of the mean.
3. Construct the confidence interval for the population mean.

STEP 3

Find the z-score for a 95% confidence level. For a 95% confidence interval, the z-score is approximately 1.96 1.96 .

STEP 4

Calculate the standard error of the mean (SEM) using the formula:
SEM=σn \text{SEM} = \frac{\sigma}{\sqrt{n}}
Substitute the given values:
SEM=67740 \text{SEM} = \frac{677}{\sqrt{40}}
SEM6776.3246 \text{SEM} \approx \frac{677}{6.3246}
SEM107.06 \text{SEM} \approx 107.06

STEP 5

Construct the confidence interval using the formula:
xˉ±z×SEM \bar{x} \pm z \times \text{SEM}
Substitute the values:
3120±1.96×107.06 3120 \pm 1.96 \times 107.06
3120±209.84 3120 \pm 209.84
Calculate the interval:
Lower limit:
3120209.84=2910.16 3120 - 209.84 = 2910.16
Upper limit:
3120+209.84=3329.84 3120 + 209.84 = 3329.84
Round to the nearest dollar:
(2910,3330) (2910, 3330)
The confidence interval for the population mean is:
($2910,$3330) \boxed{(\$ 2910, \$ 3330)}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord