Math  /  Algebra

QuestionA function is shown below. h(x)={12x15 for x4203x2 for x>4h(x)=\left\{\begin{array}{ll} -\frac{1}{2} x-15 & \text { for } x \leq-4 \\ 20-3 x^{2} & \text { for } x>-4 \end{array}\right.
What is the value of h(4)+3h(2)h(-4)+3 h(-2) ?

Studdy Solution

STEP 1

1. We are given a piecewise function h(x) h(x) .
2. The function has two parts: h(x)=12x15 h(x) = -\frac{1}{2}x - 15 for x4 x \leq -4 and h(x)=203x2 h(x) = 20 - 3x^2 for x>4 x > -4 .
3. We need to find the value of h(4)+3h(2) h(-4) + 3h(-2) .

STEP 2

1. Determine which part of the piecewise function to use for h(4) h(-4) .
2. Calculate h(4) h(-4) .
3. Determine which part of the piecewise function to use for h(2) h(-2) .
4. Calculate h(2) h(-2) .
5. Compute h(4)+3h(2) h(-4) + 3h(-2) .

STEP 3

Determine the correct part of the piecewise function for h(4) h(-4) :
Since 44 -4 \leq -4 , use h(x)=12x15 h(x) = -\frac{1}{2}x - 15 .

STEP 4

Calculate h(4) h(-4) :
h(4)=12(4)15 h(-4) = -\frac{1}{2}(-4) - 15
Simplify:
h(4)=215 h(-4) = 2 - 15 h(4)=13 h(-4) = -13

STEP 5

Determine the correct part of the piecewise function for h(2) h(-2) :
Since 2>4 -2 > -4 , use h(x)=203x2 h(x) = 20 - 3x^2 .

STEP 6

Calculate h(2) h(-2) :
h(2)=203(2)2 h(-2) = 20 - 3(-2)^2
Simplify:
h(2)=203(4) h(-2) = 20 - 3(4) h(2)=2012 h(-2) = 20 - 12 h(2)=8 h(-2) = 8

STEP 7

Compute h(4)+3h(2) h(-4) + 3h(-2) :
h(4)+3h(2)=13+3(8) h(-4) + 3h(-2) = -13 + 3(8)
Simplify:
h(4)+3h(2)=13+24 h(-4) + 3h(-2) = -13 + 24 h(4)+3h(2)=11 h(-4) + 3h(-2) = 11
The value of h(4)+3h(2) h(-4) + 3h(-2) is:
11 \boxed{11}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord