Math

Question Find the product and ratio of f(x)=x1/2f(x)=x^{1/2} and g(x)=2x3+1g(x)=\sqrt[3]{2x}+1, and rationalize the denominator of the ratio.

Studdy Solution

STEP 1

Assumptions
1. The function f(x)f(x) is defined as f(x)=x12f(x)=x^{\frac{1}{2}}.
2. The function g(x)g(x) is defined as g(x)=2x3+1g(x)=\sqrt[3]{2x}+1.
3. The operations to be performed are multiplication and division of the two functions.
4. When dividing, we will rationalize the denominator.

STEP 2

To find f(x)g(x)f(x) \bullet g(x), we multiply the two functions together.
f(x)g(x)=f(x)×g(x)f(x) \bullet g(x) = f(x) \times g(x)

STEP 3

Substitute the expressions for f(x)f(x) and g(x)g(x) into the multiplication.
f(x)g(x)=x12×(2x3+1)f(x) \bullet g(x) = x^{\frac{1}{2}} \times (\sqrt[3]{2x}+1)

STEP 4

Distribute the multiplication over the addition in the parentheses.
f(x)g(x)=x12×2x3+x12×1f(x) \bullet g(x) = x^{\frac{1}{2}} \times \sqrt[3]{2x} + x^{\frac{1}{2}} \times 1

STEP 5

Simplify the multiplication by combining the exponents where possible.
f(x)g(x)=(x12×x13)×213+x12f(x) \bullet g(x) = (x^{\frac{1}{2}} \times x^{\frac{1}{3}}) \times 2^{\frac{1}{3}} + x^{\frac{1}{2}}

STEP 6

Use the property of exponents that states am×an=am+na^{m} \times a^{n} = a^{m+n} to combine the exponents of xx.
f(x)g(x)=x12+13×213+x12f(x) \bullet g(x) = x^{\frac{1}{2} + \frac{1}{3}} \times 2^{\frac{1}{3}} + x^{\frac{1}{2}}

STEP 7

Add the exponents of xx.
f(x)g(x)=x36+26×213+x12f(x) \bullet g(x) = x^{\frac{3}{6} + \frac{2}{6}} \times 2^{\frac{1}{3}} + x^{\frac{1}{2}}
f(x)g(x)=x56×213+x12f(x) \bullet g(x) = x^{\frac{5}{6}} \times 2^{\frac{1}{3}} + x^{\frac{1}{2}}

STEP 8

Now we have the simplified form of f(x)g(x)f(x) \bullet g(x).
f(x)g(x)=213x56+x12f(x) \bullet g(x) = 2^{\frac{1}{3}}x^{\frac{5}{6}} + x^{\frac{1}{2}}

STEP 9

Next, we find f(x)g(x)\frac{f(x)}{g(x)}, which means dividing f(x)f(x) by g(x)g(x).
f(x)g(x)=x122x3+1\frac{f(x)}{g(x)} = \frac{x^{\frac{1}{2}}}{\sqrt[3]{2x}+1}

STEP 10

To rationalize the denominator, we need to multiply the numerator and the denominator by the conjugate of the denominator.
The conjugate of 2x3+1\sqrt[3]{2x}+1 is 2x31\sqrt[3]{2x}-1.

STEP 11

Multiply the numerator and the denominator by the conjugate of the denominator.
f(x)g(x)=x122x3+1×2x312x31\frac{f(x)}{g(x)} = \frac{x^{\frac{1}{2}}}{\sqrt[3]{2x}+1} \times \frac{\sqrt[3]{2x}-1}{\sqrt[3]{2x}-1}

STEP 12

Perform the multiplication in the numerator and apply the difference of squares formula in the denominator.
f(x)g(x)=x12(2x31)(2x3+1)(2x31)\frac{f(x)}{g(x)} = \frac{x^{\frac{1}{2}}(\sqrt[3]{2x}-1)}{(\sqrt[3]{2x}+1)(\sqrt[3]{2x}-1)}

STEP 13

Simplify the denominator using the difference of squares formula: (a+b)(ab)=a2b2(a+b)(a-b)=a^2-b^2.
f(x)g(x)=x12(2x31)(2x)2312\frac{f(x)}{g(x)} = \frac{x^{\frac{1}{2}}(\sqrt[3]{2x}-1)}{\sqrt[3]{(2x)^2}-1^2}

STEP 14

Calculate the denominator.
f(x)g(x)=x12(2x31)223x231\frac{f(x)}{g(x)} = \frac{x^{\frac{1}{2}}(\sqrt[3]{2x}-1)}{2^{\frac{2}{3}}x^{\frac{2}{3}}-1}

STEP 15

Now we have the simplified form of f(x)g(x)\frac{f(x)}{g(x)} with a rationalized denominator.
f(x)g(x)=x12(2x31)223x231\frac{f(x)}{g(x)} = \frac{x^{\frac{1}{2}}(\sqrt[3]{2x}-1)}{2^{\frac{2}{3}}x^{\frac{2}{3}}-1}
a) The product f(x)g(x)f(x) \bullet g(x) is 213x56+x122^{\frac{1}{3}}x^{\frac{5}{6}} + x^{\frac{1}{2}}. b) The quotient f(x)g(x)\frac{f(x)}{g(x)} with a rationalized denominator is x12(2x31)223x231\frac{x^{\frac{1}{2}}(\sqrt[3]{2x}-1)}{2^{\frac{2}{3}}x^{\frac{2}{3}}-1}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord