Math  /  Algebra

QuestionA. 911\frac{9}{11} B. 119\frac{11}{9}
9. a:b:c:d=2:3:4:7a: b: c: d=2: 3: 4: 7 бол 2a+3b5cd=\frac{2 a+3 b}{5 c-d}= ?

Studdy Solution

STEP 1

1. We are given a ratio a:b:c:d=2:3:4:7 a: b: c: d = 2: 3: 4: 7 .
2. We need to find the value of the expression 2a+3b5cd \frac{2a + 3b}{5c - d} .

STEP 2

1. Define variables based on the given ratio.
2. Substitute the variables into the expression.
3. Simplify the expression.

STEP 3

Define variables based on the given ratio. Assume a common multiple k k such that: a=2k,b=3k,c=4k,d=7k a = 2k, \, b = 3k, \, c = 4k, \, d = 7k

STEP 4

Substitute the variables into the expression 2a+3b5cd \frac{2a + 3b}{5c - d} .
2a+3b5cd=2(2k)+3(3k)5(4k)7k \frac{2a + 3b}{5c - d} = \frac{2(2k) + 3(3k)}{5(4k) - 7k}

STEP 5

Simplify the expression.
Calculate the numerator: 2(2k)+3(3k)=4k+9k=13k 2(2k) + 3(3k) = 4k + 9k = 13k
Calculate the denominator: 5(4k)7k=20k7k=13k 5(4k) - 7k = 20k - 7k = 13k
Substitute back into the expression: 13k13k=1 \frac{13k}{13k} = 1
The value of the expression is:
1 \boxed{1}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord