Math  /  Algebra

QuestionA 2.00 L container is filled with Ar(g)\mathrm{Ar}(\mathrm{g}) at 752 mmHg and 35C35^{\circ} \mathrm{C}. A 0.728 g sample of C6H6\mathrm{C}_{6} \mathrm{H}_{6} vapor is then added. a) What is the total pressure in the container? (b) What is the partial pressure of Ar and of C6H6\mathrm{C}_{6} \mathrm{H}_{6} ?

Studdy Solution

STEP 1

1. The container is rigid with a volume of 2.00 L.
2. The initial pressure of argon gas (Ar(g)\mathrm{Ar(g)}) is 752 mmHg.
3. The temperature is 35C35^{\circ} \mathrm{C}.
4. A 0.728 g sample of benzene (C6H6\mathrm{C}_{6} \mathrm{H}_{6}) vapor is added.
5. Ideal gas law applies to both gases.

STEP 2

1. Convert temperature to Kelvin.
2. Calculate the number of moles of C6H6\mathrm{C}_{6} \mathrm{H}_{6}.
3. Use the ideal gas law to find the partial pressure of C6H6\mathrm{C}_{6} \mathrm{H}_{6}.
4. Calculate the total pressure in the container.
5. Determine the partial pressures of Ar\mathrm{Ar} and C6H6\mathrm{C}_{6} \mathrm{H}_{6}.

STEP 3

Convert the temperature from Celsius to Kelvin.
T(K)=35C+273.15=308.15K T(K) = 35^{\circ} \mathrm{C} + 273.15 = 308.15 \, \mathrm{K}

STEP 4

Calculate the number of moles of C6H6\mathrm{C}_{6} \mathrm{H}_{6}.
The molar mass of C6H6\mathrm{C}_{6} \mathrm{H}_{6} is approximately 78.11g/mol78.11 \, \mathrm{g/mol}.
n=massmolar mass=0.728g78.11g/mol0.00932mol n = \frac{\text{mass}}{\text{molar mass}} = \frac{0.728 \, \mathrm{g}}{78.11 \, \mathrm{g/mol}} \approx 0.00932 \, \mathrm{mol}

STEP 5

Use the ideal gas law to find the partial pressure of C6H6\mathrm{C}_{6} \mathrm{H}_{6}.
The ideal gas law is PV=nRTPV = nRT.
PC6H6=nRTV P_{\mathrm{C}_{6} \mathrm{H}_{6}} = \frac{nRT}{V}
Where: - R=0.0821Latm/(molK) R = 0.0821 \, \mathrm{L \cdot atm/(mol \cdot K)} - n=0.00932mol n = 0.00932 \, \mathrm{mol} - T=308.15K T = 308.15 \, \mathrm{K} - V=2.00L V = 2.00 \, \mathrm{L}
PC6H6=0.00932mol×0.0821Latm/(molK)×308.15K2.00L P_{\mathrm{C}_{6} \mathrm{H}_{6}} = \frac{0.00932 \, \mathrm{mol} \times 0.0821 \, \mathrm{L \cdot atm/(mol \cdot K)} \times 308.15 \, \mathrm{K}}{2.00 \, \mathrm{L}}
PC6H60.118atm P_{\mathrm{C}_{6} \mathrm{H}_{6}} \approx 0.118 \, \mathrm{atm}
Convert to mmHg: 0.118atm×760mmHg/atm89.68mmHg0.118 \, \mathrm{atm} \times 760 \, \mathrm{mmHg/atm} \approx 89.68 \, \mathrm{mmHg}

STEP 6

Calculate the total pressure in the container.
The total pressure is the sum of the initial pressure of Ar\mathrm{Ar} and the partial pressure of C6H6\mathrm{C}_{6} \mathrm{H}_{6}.
Ptotal=PAr+PC6H6 P_{\text{total}} = P_{\mathrm{Ar}} + P_{\mathrm{C}_{6} \mathrm{H}_{6}}
Ptotal=752mmHg+89.68mmHg841.68mmHg P_{\text{total}} = 752 \, \mathrm{mmHg} + 89.68 \, \mathrm{mmHg} \approx 841.68 \, \mathrm{mmHg}

STEP 7

Determine the partial pressures of Ar\mathrm{Ar} and C6H6\mathrm{C}_{6} \mathrm{H}_{6}.
- Partial pressure of Ar\mathrm{Ar} is given as 752mmHg752 \, \mathrm{mmHg}. - Partial pressure of C6H6\mathrm{C}_{6} \mathrm{H}_{6} is calculated as 89.68mmHg89.68 \, \mathrm{mmHg}.
The total pressure in the container is approximately 841.68mmHg841.68 \, \mathrm{mmHg}.
The partial pressure of Ar\mathrm{Ar} is 752mmHg752 \, \mathrm{mmHg} and the partial pressure of C6H6\mathrm{C}_{6} \mathrm{H}_{6} is 89.68mmHg89.68 \, \mathrm{mmHg}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord