Math  /  Algebra

Question9. f(x)=11+x2f(x)=\frac{1}{1+x^{2}} бол f(x),f(x3),f(1x),2f(x),14f(x)+5f(1x)f(-x), f(x-3), f\left(\frac{1}{x}\right), 2 f(x), \frac{1}{4} f(x)+5 f\left(\frac{1}{x}\right)-ийг ол.

Studdy Solution

STEP 1

1. We are given the function f(x)=11+x2 f(x) = \frac{1}{1+x^2} .
2. We need to find expressions for f(x) f(-x) , f(x3) f(x-3) , f(1x) f\left(\frac{1}{x}\right) , 2f(x) 2f(x) , and 14f(x)+5f(1x) \frac{1}{4}f(x) + 5f\left(\frac{1}{x}\right) .

STEP 2

1. Substitute x-x into f(x) f(x) to find f(x) f(-x) .
2. Substitute x3 x-3 into f(x) f(x) to find f(x3) f(x-3) .
3. Substitute 1x \frac{1}{x} into f(x) f(x) to find f(1x) f\left(\frac{1}{x}\right) .
4. Multiply f(x) f(x) by 2 to find 2f(x) 2f(x) .
5. Combine 14f(x) \frac{1}{4}f(x) and 5f(1x) 5f\left(\frac{1}{x}\right) to find 14f(x)+5f(1x) \frac{1}{4}f(x) + 5f\left(\frac{1}{x}\right) .

STEP 3

To find f(x) f(-x) , substitute x -x into f(x) f(x) . f(x)=11+(x)2=11+x2 f(-x) = \frac{1}{1+(-x)^2} = \frac{1}{1+x^2}

STEP 4

To find f(x3) f(x-3) , substitute x3 x-3 into f(x) f(x) . f(x3)=11+(x3)2=11+(x26x+9)=1x26x+10 f(x-3) = \frac{1}{1+(x-3)^2} = \frac{1}{1+(x^2-6x+9)} = \frac{1}{x^2-6x+10}

STEP 5

To find f(1x) f\left(\frac{1}{x}\right) , substitute 1x \frac{1}{x} into f(x) f(x) . f(1x)=11+(1x)2=11+1x2=1x2+1x2=x2x2+1 f\left(\frac{1}{x}\right) = \frac{1}{1+\left(\frac{1}{x}\right)^2} = \frac{1}{1+\frac{1}{x^2}} = \frac{1}{\frac{x^2+1}{x^2}} = \frac{x^2}{x^2+1}

STEP 6

To find 2f(x) 2f(x) , multiply f(x) f(x) by 2. 2f(x)=211+x2=21+x2 2f(x) = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2}

STEP 7

To find 14f(x)+5f(1x) \frac{1}{4}f(x) + 5f\left(\frac{1}{x}\right) , combine the expressions found in previous steps. 14f(x)=1411+x2=14(1+x2) \frac{1}{4}f(x) = \frac{1}{4} \cdot \frac{1}{1+x^2} = \frac{1}{4(1+x^2)} 5f(1x)=5x2x2+1=5x2x2+1 5f\left(\frac{1}{x}\right) = 5 \cdot \frac{x^2}{x^2+1} = \frac{5x^2}{x^2+1} 14f(x)+5f(1x)=14(1+x2)+5x2x2+1=14(1+x2)+5x2x2+1 \frac{1}{4}f(x) + 5f\left(\frac{1}{x}\right) = \frac{1}{4(1+x^2)} + \frac{5x^2}{x^2+1} = \frac{1}{4(1+x^2)} + \frac{5x^2}{x^2+1}
Solution:
1. f(x)=11+x2 f(-x) = \frac{1}{1+x^2}
2. f(x3)=1x26x+10 f(x-3) = \frac{1}{x^2-6x+10}
3. f(1x)=x2x2+1 f\left(\frac{1}{x}\right) = \frac{x^2}{x^2+1}
4. 2f(x)=21+x2 2f(x) = \frac{2}{1+x^2}
5. 14f(x)+5f(1x)=14(1+x2)+5x2x2+1 \frac{1}{4}f(x) + 5f\left(\frac{1}{x}\right) = \frac{1}{4(1+x^2)} + \frac{5x^2}{x^2+1}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord