Math  /  Trigonometry

Question7. For each triangle, determine the length of the hypotenuse to the nearest tenth of a metre. a)

Studdy Solution

STEP 1

1. Each triangle is a right triangle.
2. The given side is the side adjacent to the given angle.
3. We need to find the hypotenuse h h for each triangle.

STEP 2

1. Use the cosine function to find the hypotenuse for triangle a).
2. Use the cosine function to find the hypotenuse for triangle b).

STEP 3

For triangle a), recall the cosine function in a right triangle:
cos(θ)=Adjacent SideHypotenuse \cos(\theta) = \frac{\text{Adjacent Side}}{\text{Hypotenuse}}

STEP 4

Substitute the given values for triangle a):
cos(35)=3.0mh \cos(35^\circ) = \frac{3.0 \, \text{m}}{h}

STEP 5

Solve for the hypotenuse h h in triangle a):
h=3.0mcos(35) h = \frac{3.0 \, \text{m}}{\cos(35^\circ)}

STEP 6

Calculate the value of h h for triangle a) using a calculator:
h3.00.81923.7m h \approx \frac{3.0}{0.8192} \approx 3.7 \, \text{m}

STEP 7

For triangle b), recall the cosine function in a right triangle:
cos(θ)=Adjacent SideHypotenuse \cos(\theta) = \frac{\text{Adjacent Side}}{\text{Hypotenuse}}

STEP 8

Substitute the given values for triangle b):
cos(39)=5.0mh \cos(39^\circ) = \frac{5.0 \, \text{m}}{h}

STEP 9

Solve for the hypotenuse h h in triangle b):
h=5.0mcos(39) h = \frac{5.0 \, \text{m}}{\cos(39^\circ)}

STEP 10

Calculate the value of h h for triangle b) using a calculator:
h5.00.77716.4m h \approx \frac{5.0}{0.7771} \approx 6.4 \, \text{m}
The lengths of the hypotenuses are:
a) 3.7m \boxed{3.7 \, \text{m}}
b) 6.4m \boxed{6.4 \, \text{m}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord