Math  /  Numbers & Operations

Question48162,8448,56112,4284,36218,2040,24288,56126\frac{48}{\sqrt{162}}, \quad \frac{84}{\sqrt{48}}, \quad \frac{56}{\sqrt{112}}, \quad \frac{-42}{\sqrt{84}}, \quad \frac{36}{2 \sqrt{18}}, \quad \frac{-20}{\sqrt{40}}, \quad \frac{24}{\sqrt{288}}, \quad \frac{-56}{\sqrt{126}}

Studdy Solution

STEP 1

1. Each expression is a fraction with a numerator and a denominator involving square roots.
2. The task is to simplify each expression.
3. Simplification involves rationalizing the denominator and reducing the fraction if possible.

STEP 2

1. Simplify the square root in the denominator.
2. Rationalize the denominator.
3. Simplify the fraction.

STEP 3

Simplify the square root in the denominator for each expression.
1. 162=81×2=92 \sqrt{162} = \sqrt{81 \times 2} = 9\sqrt{2}
2. 48=16×3=43 \sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}
3. 112=16×7=47 \sqrt{112} = \sqrt{16 \times 7} = 4\sqrt{7}
4. 84=4×21=221 \sqrt{84} = \sqrt{4 \times 21} = 2\sqrt{21}
5. 18=9×2=32 \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2}
6. 40=4×10=210 \sqrt{40} = \sqrt{4 \times 10} = 2\sqrt{10}
7. 288=144×2=122 \sqrt{288} = \sqrt{144 \times 2} = 12\sqrt{2}
8. 126=9×14=314 \sqrt{126} = \sqrt{9 \times 14} = 3\sqrt{14}

STEP 4

Rationalize the denominator for each expression.
1. 4892×22=48218 \frac{48}{9\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{48\sqrt{2}}{18}
2. 8443×33=84312 \frac{84}{4\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{84\sqrt{3}}{12}
3. 5647×77=56728 \frac{56}{4\sqrt{7}} \times \frac{\sqrt{7}}{\sqrt{7}} = \frac{56\sqrt{7}}{28}
4. 42221×2121=422142 \frac{-42}{2\sqrt{21}} \times \frac{\sqrt{21}}{\sqrt{21}} = \frac{-42\sqrt{21}}{42}
5. 36232×22=36212 \frac{36}{2 \cdot 3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{36\sqrt{2}}{12}
6. 20210×1010=201020 \frac{-20}{2\sqrt{10}} \times \frac{\sqrt{10}}{\sqrt{10}} = \frac{-20\sqrt{10}}{20}
7. 24122×22=24224 \frac{24}{12\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{24\sqrt{2}}{24}
8. 56314×1414=561442 \frac{-56}{3\sqrt{14}} \times \frac{\sqrt{14}}{\sqrt{14}} = \frac{-56\sqrt{14}}{42}

STEP 5

Simplify the fraction for each expression.
1. 48218=823 \frac{48\sqrt{2}}{18} = \frac{8\sqrt{2}}{3}
2. 84312=73 \frac{84\sqrt{3}}{12} = 7\sqrt{3}
3. 56728=27 \frac{56\sqrt{7}}{28} = 2\sqrt{7}
4. 422142=21 \frac{-42\sqrt{21}}{42} = -\sqrt{21}
5. 36212=32 \frac{36\sqrt{2}}{12} = 3\sqrt{2}
6. 201020=10 \frac{-20\sqrt{10}}{20} = -\sqrt{10}
7. 24224=2 \frac{24\sqrt{2}}{24} = \sqrt{2}
8. 561442=4143 \frac{-56\sqrt{14}}{42} = -\frac{4\sqrt{14}}{3}

The simplified expressions are:
1. 823 \frac{8\sqrt{2}}{3}
2. 73 7\sqrt{3}
3. 27 2\sqrt{7}
4. 21 -\sqrt{21}
5. 32 3\sqrt{2}
6. 10 -\sqrt{10}
7. 2 \sqrt{2}
8. 4143 -\frac{4\sqrt{14}}{3}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord