Math  /  Calculus

Question4u6u2+6u+18du\int \frac{4 u-6}{u^{2}+6 u+18} d u

Studdy Solution

STEP 1

1. The integral is of the form au+bu2+cu+ddu\int \frac{a u + b}{u^2 + cu + d} \, du.
2. The numerator can potentially be expressed as a derivative of the denominator plus a constant.
3. The integral can be solved using substitution and partial fraction decomposition if necessary.

STEP 2

1. Simplify the integral by expressing the numerator in terms of the derivative of the denominator.
2. Perform substitution if necessary.
3. Integrate the resulting expression.

STEP 3

First, identify the derivative of the denominator u2+6u+18u^2 + 6u + 18. The derivative is:
ddu(u2+6u+18)=2u+6\frac{d}{du}(u^2 + 6u + 18) = 2u + 6
Notice that the numerator 4u64u - 6 can be expressed in terms of 2u+62u + 6:
4u6=2(2u+6)184u - 6 = 2(2u + 6) - 18
Thus, we can rewrite the integral as:
4u6u2+6u+18du=2(2u+6)18u2+6u+18du\int \frac{4u - 6}{u^2 + 6u + 18} \, du = \int \frac{2(2u + 6) - 18}{u^2 + 6u + 18} \, du

STEP 4

Split the integral into two separate integrals:
2(2u+6)u2+6u+18du18u2+6u+18du\int \frac{2(2u + 6)}{u^2 + 6u + 18} \, du - \int \frac{18}{u^2 + 6u + 18} \, du
The first integral can be simplified using substitution. Let v=u2+6u+18v = u^2 + 6u + 18, then dv=(2u+6)dudv = (2u + 6) \, du.
For the first integral:
2(2u+6)u2+6u+18du=2dvv=2lnv+C1=2lnu2+6u+18+C1\int \frac{2(2u + 6)}{u^2 + 6u + 18} \, du = \int \frac{2 \, dv}{v} = 2 \ln |v| + C_1 = 2 \ln |u^2 + 6u + 18| + C_1

STEP 5

For the second integral, 18u2+6u+18du\int \frac{18}{u^2 + 6u + 18} \, du, complete the square in the denominator:
u2+6u+18=(u+3)2+9u^2 + 6u + 18 = (u + 3)^2 + 9
This suggests a trigonometric substitution or recognizing it as a standard arctangent form:
18(u+3)2+9du=18(u+3)2+32du\int \frac{18}{(u + 3)^2 + 9} \, du = \int \frac{18}{(u + 3)^2 + 3^2} \, du
Using the standard integral 1x2+a2dx=1atan1(xa)+C\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + C, we have:
=1813tan1(u+33)+C2=6tan1(u+33)+C2= 18 \cdot \frac{1}{3} \tan^{-1} \left(\frac{u + 3}{3}\right) + C_2 = 6 \tan^{-1} \left(\frac{u + 3}{3}\right) + C_2

STEP 6

Combine the results from the two integrals:
4u6u2+6u+18du=2lnu2+6u+18+6tan1(u+33)+C\int \frac{4u - 6}{u^2 + 6u + 18} \, du = 2 \ln |u^2 + 6u + 18| + 6 \tan^{-1} \left(\frac{u + 3}{3}\right) + C
where C=C1+C2C = C_1 + C_2 is the constant of integration.
The solution to the integral is:
2lnu2+6u+18+6tan1(u+33)+C2 \ln |u^2 + 6u + 18| + 6 \tan^{-1} \left(\frac{u + 3}{3}\right) + C

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord