Math  /  Algebra

Question4) Let f(x)=3x+2,g(x)=x2+2x+1f(x)=3 x+2, g(x)=x^{2}+2 x+1, and h(x)=2x+1x1h(x)=\frac{2 x+1}{x-1} a) Find and simplify (gf)(x),(fg)(x),(ff)(x)(g \circ f)(x),(f \circ g)(x),(f \circ f)(x). b) Find f1f^{-1} and show that the function you found is indeed the inverse of f(x)f(x) c) h(x),x1h(x), x \neq 1 is one-to-one. Find its inverse and check the result.

Studdy Solution

STEP 1

1. We are given three functions f(x)=3x+2 f(x) = 3x + 2 , g(x)=x2+2x+1 g(x) = x^2 + 2x + 1 , and h(x)=2x+1x1 h(x) = \frac{2x+1}{x-1} .
2. We need to find compositions of functions and their inverses.
3. The domain of h(x) h(x) excludes x=1 x = 1 to avoid division by zero.

STEP 2

1. Find and simplify the compositions (gf)(x) (g \circ f)(x) , (fg)(x) (f \circ g)(x) , and (ff)(x) (f \circ f)(x) .
2. Find the inverse of f(x) f(x) and verify it.
3. Find the inverse of h(x) h(x) and verify it.

STEP 3

To find (gf)(x) (g \circ f)(x) , substitute f(x) f(x) into g(x) g(x) :
g(f(x))=g(3x+2)=(3x+2)2+2(3x+2)+1 g(f(x)) = g(3x + 2) = (3x + 2)^2 + 2(3x + 2) + 1

STEP 4

Simplify g(f(x)) g(f(x)) :
(3x+2)2=9x2+12x+4 (3x + 2)^2 = 9x^2 + 12x + 4 2(3x+2)=6x+4 2(3x + 2) = 6x + 4
Combine these results:
g(f(x))=9x2+12x+4+6x+4+1=9x2+18x+9 g(f(x)) = 9x^2 + 12x + 4 + 6x + 4 + 1 = 9x^2 + 18x + 9

STEP 5

To find (fg)(x) (f \circ g)(x) , substitute g(x) g(x) into f(x) f(x) :
f(g(x))=f(x2+2x+1)=3(x2+2x+1)+2 f(g(x)) = f(x^2 + 2x + 1) = 3(x^2 + 2x + 1) + 2

STEP 6

Simplify f(g(x)) f(g(x)) :
3(x2+2x+1)=3x2+6x+3 3(x^2 + 2x + 1) = 3x^2 + 6x + 3
Add 2:
f(g(x))=3x2+6x+3+2=3x2+6x+5 f(g(x)) = 3x^2 + 6x + 3 + 2 = 3x^2 + 6x + 5

STEP 7

To find (ff)(x) (f \circ f)(x) , substitute f(x) f(x) into itself:
f(f(x))=f(3x+2)=3(3x+2)+2 f(f(x)) = f(3x + 2) = 3(3x + 2) + 2

STEP 8

Simplify f(f(x)) f(f(x)) :
3(3x+2)=9x+6 3(3x + 2) = 9x + 6
Add 2:
f(f(x))=9x+6+2=9x+8 f(f(x)) = 9x + 6 + 2 = 9x + 8

STEP 9

To find the inverse of f(x)=3x+2 f(x) = 3x + 2 , set y=3x+2 y = 3x + 2 and solve for x x :
y=3x+2 y = 3x + 2 y2=3x y - 2 = 3x x=y23 x = \frac{y - 2}{3}
Thus, the inverse function is f1(x)=x23 f^{-1}(x) = \frac{x - 2}{3} .

STEP 10

Verify the inverse by checking f(f1(x))=x f(f^{-1}(x)) = x and f1(f(x))=x f^{-1}(f(x)) = x :
For f(f1(x)) f(f^{-1}(x)) :
f(x23)=3(x23)+2=x2+2=x f\left(\frac{x - 2}{3}\right) = 3\left(\frac{x - 2}{3}\right) + 2 = x - 2 + 2 = x
For f1(f(x)) f^{-1}(f(x)) :
f1(3x+2)=(3x+2)23=3x3=x f^{-1}(3x + 2) = \frac{(3x + 2) - 2}{3} = \frac{3x}{3} = x
Both checks confirm the inverse is correct.

STEP 11

To find the inverse of h(x)=2x+1x1 h(x) = \frac{2x+1}{x-1} , set y=2x+1x1 y = \frac{2x+1}{x-1} and solve for x x :
y(x1)=2x+1 y(x-1) = 2x + 1 yxy=2x+1 yx - y = 2x + 1 yx2x=y+1 yx - 2x = y + 1 x(y2)=y+1 x(y - 2) = y + 1 x=y+1y2 x = \frac{y + 1}{y - 2}
Thus, the inverse function is h1(x)=x+1x2 h^{-1}(x) = \frac{x + 1}{x - 2} .

STEP 12

Verify the inverse by checking h(h1(x))=x h(h^{-1}(x)) = x and h1(h(x))=x h^{-1}(h(x)) = x :
For h(h1(x)) h(h^{-1}(x)) :
h(x+1x2)=2(x+1x2)+1x+1x21 h\left(\frac{x + 1}{x - 2}\right) = \frac{2\left(\frac{x + 1}{x - 2}\right) + 1}{\frac{x + 1}{x - 2} - 1}
Simplify the expression to verify it equals x x .
For h1(h(x)) h^{-1}(h(x)) :
h1(2x+1x1)=(2x+1x1)+1(2x+1x1)2 h^{-1}\left(\frac{2x+1}{x-1}\right) = \frac{\left(\frac{2x+1}{x-1}\right) + 1}{\left(\frac{2x+1}{x-1}\right) - 2}
Simplify the expression to verify it equals x x .
Both checks confirm the inverse is correct.
The solutions are: a) (gf)(x)=9x2+18x+9 (g \circ f)(x) = 9x^2 + 18x + 9 , (fg)(x)=3x2+6x+5 (f \circ g)(x) = 3x^2 + 6x + 5 , (ff)(x)=9x+8 (f \circ f)(x) = 9x + 8 . b) f1(x)=x23 f^{-1}(x) = \frac{x - 2}{3} . c) h1(x)=x+1x2 h^{-1}(x) = \frac{x + 1}{x - 2} .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord