Solve a problem of your own!
Download the Studdy App!

Math

Math Snap

PROBLEM

4. Find the linear approximation of the following functions ff at the given xx-value and use it to approximate the function at the given value.
a.) f(θ)=sinθ,θ=0,sin(0.2)f(\theta)=\sin \theta, \quad \theta=0, \sin (0.2) \approx ?
b.) f(x)=ln(1+2x),x=0,ln(1.2)f(x)=\ln (1+2 x), x=0, \ln (1.2) \approx ?

STEP 1

1. We are using linear approximation (or linearization) to estimate the value of a function near a given point.
2. Linear approximation uses the formula L(x)=f(a)+f(a)(xa) L(x) = f(a) + f'(a)(x-a) , where a a is the point of approximation.
3. We are given specific functions and points to approximate.

STEP 2

1. Linear approximation for f(θ)=sinθ f(\theta) = \sin \theta at θ=0 \theta = 0 .
2. Use the linear approximation to estimate sin(0.2) \sin(0.2) .
3. Linear approximation for f(x)=ln(1+2x) f(x) = \ln(1+2x) at x=0 x = 0 .
4. Use the linear approximation to estimate ln(1.2) \ln(1.2) .

STEP 3

For f(θ)=sinθ f(\theta) = \sin \theta , calculate f(0) f(0) and f(0) f'(0) .
- f(0)=sin(0)=0 f(0) = \sin(0) = 0
- f(θ)=cosθ f'(\theta) = \cos \theta , so f(0)=cos(0)=1 f'(0) = \cos(0) = 1

STEP 4

Use the linear approximation formula L(θ)=f(0)+f(0)(θ0) L(\theta) = f(0) + f'(0)(\theta - 0) .
- L(θ)=0+1(θ0)=θ L(\theta) = 0 + 1 \cdot (\theta - 0) = \theta
Approximate sin(0.2) \sin(0.2) using L(θ) L(\theta) :
- L(0.2)=0.2 L(0.2) = 0.2

STEP 5

For f(x)=ln(1+2x) f(x) = \ln(1+2x) , calculate f(0) f(0) and f(0) f'(0) .
- f(0)=ln(1+20)=ln(1)=0 f(0) = \ln(1+2 \cdot 0) = \ln(1) = 0
- f(x)=21+2x f'(x) = \frac{2}{1+2x} , so f(0)=21+20=2 f'(0) = \frac{2}{1+2 \cdot 0} = 2

SOLUTION

Use the linear approximation formula L(x)=f(0)+f(0)(x0) L(x) = f(0) + f'(0)(x - 0) .
- L(x)=0+2(x0)=2x L(x) = 0 + 2 \cdot (x - 0) = 2x
Approximate ln(1.2) \ln(1.2) using L(x) L(x) :
- Since ln(1.2)=ln(1+20.1) \ln(1.2) = \ln(1 + 2 \cdot 0.1) , use L(0.1)=20.1=0.2 L(0.1) = 2 \cdot 0.1 = 0.2
The approximations are:
a.) sin(0.2)0.2 \sin(0.2) \approx 0.2
b.) ln(1.2)0.2 \ln(1.2) \approx 0.2

Was this helpful?
banner

Start understanding anything

Get started now for free.

OverviewParentsContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord