Math  /  Calculus

Question4. Compute the indefinite integral sec3xdx\int \sec ^{3} x d x.

Studdy Solution

STEP 1

What is this asking? We need to find the *family* of functions whose derivative is sec3(x)\sec^3(x). Watch out! This integral requires a clever trick using integration by parts, and it's easy to get lost in the algebra.

STEP 2

1. Set up Integration by Parts
2. Solve for the Integral
3. Simplify the Result

STEP 3

Alright, let's **tackle** this integral using integration by parts!
Remember the formula: udv=uvvdu\int u dv = uv - \int v du.
Now, we need to choose our *u* and *dv* wisely.
Let's set u=sec(x)u = \sec(x) and dv=sec2(x)dxdv = \sec^2(x) dx.

STEP 4

Why this choice?
Well, if u=sec(x)u = \sec(x), then du=sec(x)tan(x)dxdu = \sec(x) \cdot \tan(x) dx.
And if dv=sec2(x)dxdv = \sec^2(x) dx, then v=tan(x)v = \tan(x).
See how nicely that works out?

STEP 5

Plugging these into our integration by parts formula, we get: sec3(x)dx=sec(x)tan(x)tan(x)sec(x)tan(x)dx \int \sec^3(x) dx = \sec(x) \cdot \tan(x) - \int \tan(x) \cdot \sec(x) \cdot \tan(x) dx sec3(x)dx=sec(x)tan(x)sec(x)tan2(x)dx \int \sec^3(x) dx = \sec(x) \cdot \tan(x) - \int \sec(x) \cdot \tan^2(x) dx

STEP 6

Now, remember the **trigonometric identity**: tan2(x)=sec2(x)1\tan^2(x) = \sec^2(x) - 1.
Let's substitute that in: sec3(x)dx=sec(x)tan(x)sec(x)(sec2(x)1)dx \int \sec^3(x) dx = \sec(x) \cdot \tan(x) - \int \sec(x) \cdot (\sec^2(x) - 1) dx sec3(x)dx=sec(x)tan(x)(sec3(x)sec(x))dx \int \sec^3(x) dx = \sec(x) \cdot \tan(x) - \int (\sec^3(x) - \sec(x)) dx sec3(x)dx=sec(x)tan(x)sec3(x)dx+sec(x)dx \int \sec^3(x) dx = \sec(x) \cdot \tan(x) - \int \sec^3(x) dx + \int \sec(x) dx

STEP 7

Look! We have sec3(x)dx\int \sec^3(x) dx on *both* sides of the equation.
Let's **add** sec3(x)dx\int \sec^3(x) dx to both sides: 2sec3(x)dx=sec(x)tan(x)+sec(x)dx 2 \int \sec^3(x) dx = \sec(x) \cdot \tan(x) + \int \sec(x) dx

STEP 8

We know that sec(x)dx=lnsec(x)+tan(x)+C\int \sec(x) dx = \ln|\sec(x) + \tan(x)| + C.
So, we have: 2sec3(x)dx=sec(x)tan(x)+lnsec(x)+tan(x)+C 2 \int \sec^3(x) dx = \sec(x) \cdot \tan(x) + \ln|\sec(x) + \tan(x)| + C

STEP 9

Finally, we **divide both sides** by 22 to isolate our integral: sec3(x)dx=12(sec(x)tan(x)+lnsec(x)+tan(x))+C \int \sec^3(x) dx = \frac{1}{2} (\sec(x) \cdot \tan(x) + \ln|\sec(x) + \tan(x)|) + C Remember, since *C* is an arbitrary constant, C2\frac{C}{2} is *also* an arbitrary constant, so we can just keep calling it *C*.

STEP 10

The indefinite integral is: sec3(x)dx=12(sec(x)tan(x)+lnsec(x)+tan(x))+C \int \sec^3(x) dx = \frac{1}{2} (\sec(x) \cdot \tan(x) + \ln|\sec(x) + \tan(x)|) + C

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord