Math  /  Calculus

Question3.1.2
In Problems 37-54, use the limit laws to evaluate each limit.
37. limx1(x3+7x1)\lim _{x \rightarrow-1}\left(x^{3}+7 x-1\right)
39. limx5(4+2x2)\lim _{x \rightarrow-5}\left(4+2 x^{2}\right)
38. limx2(3x42x+1)\lim _{x \rightarrow 2}\left(3 x^{4}-2 x+1\right)
41. limx3(2x21x)\lim _{x \rightarrow 3}\left(2 x^{2}-\frac{1}{x}\right)
40. limx2(8x32x+4)\lim _{x \rightarrow 2}\left(8 x^{3}-2 x+4\right)
43. limx3x320x+1\lim _{x \rightarrow-3} \frac{x^{3}-20}{x+1}
42. limx2(x222x2)\lim _{x \rightarrow-2}\left(\frac{x^{2}}{2}-\frac{2}{x^{2}}\right)
45. limx33x2+12x3\lim _{x \rightarrow 3} \frac{3 x^{2}+1}{2 x-3}
44. limx1x31x+2\lim _{x \rightarrow 1} \frac{x^{3}-1}{x+2}
47. limx11x21x\lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x}
46. limx21+x1x\lim _{x \rightarrow-2} \frac{1+x}{1-x}
49. limx3x22x3x3\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}
48. limu39u23u\lim _{u \rightarrow 3} \frac{9-u^{2}}{3-u}
51. limx22xx24\lim _{x \rightarrow 2} \frac{2-x}{x^{2}-4}
50. limx1(x1)2x21\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{x^{2}-1}
53. limx22x2+3x2x+2\lim _{x \rightarrow-2} \frac{2 x^{2}+3 x-2}{x+2}
52. limx4x+416x2\lim _{x \rightarrow-4} \frac{x+4}{16-x^{2}}
54. limx1/21x2x212x\lim _{x \rightarrow 1 / 2} \frac{1-x-2 x^{2}}{1-2 x}

Studdy Solution

STEP 1

1. We are given several limits to evaluate using limit laws.
2. We assume that all functions are continuous at the points of evaluation unless otherwise specified.
3. We will apply limit laws such as the sum, difference, product, quotient, and power laws as needed.

STEP 2

1. Evaluate polynomial limits directly by substitution.
2. Simplify rational expressions if necessary and evaluate limits.
3. Apply limit laws to evaluate limits involving fractions.

Let's solve each problem one by one.

STEP 3

Evaluate limx1(x3+7x1)\lim _{x \rightarrow-1}\left(x^{3}+7 x-1\right):
Direct substitution is possible since the function is a polynomial:
limx1(x3+7x1)=(1)3+7(1)1 \lim_{x \to -1} (x^3 + 7x - 1) = (-1)^3 + 7(-1) - 1

STEP 4

Simplify the expression:
=171 = -1 - 7 - 1 =9 = -9

STEP 5

Evaluate limx5(4+2x2)\lim _{x \rightarrow-5}\left(4+2 x^{2}\right):
Direct substitution is possible since the function is a polynomial:
limx5(4+2x2)=4+2(5)2 \lim_{x \to -5} (4 + 2x^2) = 4 + 2(-5)^2

STEP 6

Simplify the expression:
=4+2(25) = 4 + 2(25) =4+50 = 4 + 50 =54 = 54

STEP 7

Evaluate limx2(3x42x+1)\lim _{x \rightarrow 2}\left(3 x^{4}-2 x+1\right):
Direct substitution is possible since the function is a polynomial:
limx2(3x42x+1)=3(2)42(2)+1 \lim_{x \to 2} (3x^4 - 2x + 1) = 3(2)^4 - 2(2) + 1

STEP 8

Simplify the expression:
=3(16)4+1 = 3(16) - 4 + 1 =484+1 = 48 - 4 + 1 =45 = 45

STEP 9

Evaluate limx3(2x21x)\lim _{x \rightarrow 3}\left(2 x^{2}-\frac{1}{x}\right):
Direct substitution is possible since the function is a polynomial and rational function:
limx3(2x21x)=2(3)213 \lim_{x \to 3} \left(2x^2 - \frac{1}{x}\right) = 2(3)^2 - \frac{1}{3}

STEP 10

Simplify the expression:
=2(9)13 = 2(9) - \frac{1}{3} =1813 = 18 - \frac{1}{3} =54313 = \frac{54}{3} - \frac{1}{3} =533 = \frac{53}{3}

STEP 11

Evaluate limx2(8x32x+4)\lim _{x \rightarrow 2}\left(8 x^{3}-2 x+4\right):
Direct substitution is possible since the function is a polynomial:
limx2(8x32x+4)=8(2)32(2)+4 \lim_{x \to 2} (8x^3 - 2x + 4) = 8(2)^3 - 2(2) + 4

STEP 12

Simplify the expression:
=8(8)4+4 = 8(8) - 4 + 4 =644+4 = 64 - 4 + 4 =64 = 64

STEP 13

Evaluate limx3x320x+1\lim _{x \rightarrow-3} \frac{x^{3}-20}{x+1}:
Direct substitution results in an indeterminate form, so we need to simplify:
limx3x320x+1 \lim_{x \to -3} \frac{x^3 - 20}{x + 1}

STEP 14

Since direct substitution doesn't work, check for factorization or other simplification techniques. Since x320x^3 - 20 does not factor nicely, use direct substitution to check if the limit exists:
limx3(3)3203+1=27202 \lim_{x \to -3} \frac{(-3)^3 - 20}{-3 + 1} = \frac{-27 - 20}{-2}

STEP 15

Simplify the expression:
=472 = \frac{-47}{-2} =472 = \frac{47}{2}

STEP 16

Evaluate limx2(x222x2)\lim _{x \rightarrow-2}\left(\frac{x^{2}}{2}-\frac{2}{x^{2}}\right):
Direct substitution is possible since the function is a polynomial and rational function:
limx2(x222x2)=(2)222(2)2 \lim_{x \to -2} \left(\frac{x^2}{2} - \frac{2}{x^2}\right) = \frac{(-2)^2}{2} - \frac{2}{(-2)^2}

STEP 17

Simplify the expression:
=4224 = \frac{4}{2} - \frac{2}{4} =212 = 2 - \frac{1}{2} =4212 = \frac{4}{2} - \frac{1}{2} =32 = \frac{3}{2}

STEP 18

Evaluate limx33x2+12x3\lim _{x \rightarrow 3} \frac{3 x^{2}+1}{2 x-3}:
Direct substitution results in a non-zero denominator, so evaluate directly:
limx33x2+12x3=3(3)2+12(3)3 \lim_{x \to 3} \frac{3x^2 + 1}{2x - 3} = \frac{3(3)^2 + 1}{2(3) - 3}

STEP 19

Simplify the expression:
=27+163 = \frac{27 + 1}{6 - 3} =283 = \frac{28}{3}

STEP 20

Evaluate limx1x31x+2\lim _{x \rightarrow 1} \frac{x^{3}-1}{x+2}:
Direct substitution is possible since the function is a polynomial and rational function:
limx1x31x+2=1311+2 \lim_{x \to 1} \frac{x^3 - 1}{x + 2} = \frac{1^3 - 1}{1 + 2}

STEP 21

Simplify the expression:
=03 = \frac{0}{3} =0 = 0

STEP 22

Evaluate limx11x21x\lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x}:
Direct substitution results in an indeterminate form, so factor the numerator:
limx11x21x=limx1(1x)(1+x)1x \lim_{x \to 1} \frac{1 - x^2}{1 - x} = \lim_{x \to 1} \frac{(1 - x)(1 + x)}{1 - x}

STEP 23

Cancel the common factor:
=limx1(1+x) = \lim_{x \to 1} (1 + x)

STEP 24

Substitute x=1x = 1:
=1+1 = 1 + 1 =2 = 2

STEP 25

Evaluate limx21+x1x\lim _{x \rightarrow-2} \frac{1+x}{1-x}:
Direct substitution is possible since the function is a polynomial and rational function:
limx21+x1x=1+(2)1(2) \lim_{x \to -2} \frac{1 + x}{1 - x} = \frac{1 + (-2)}{1 - (-2)}

STEP 26

Simplify the expression:
=13 = \frac{-1}{3}

STEP 27

Evaluate limx3x22x3x3\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}:
Direct substitution results in an indeterminate form, so factor the numerator:
limx3x22x3x3=limx3(x3)(x+1)x3 \lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 1)}{x - 3}

STEP 28

Cancel the common factor:
=limx3(x+1) = \lim_{x \to 3} (x + 1)

STEP 29

Substitute x=3x = 3:
=3+1 = 3 + 1 =4 = 4

STEP 30

Evaluate limu39u23u\lim _{u \rightarrow 3} \frac{9-u^{2}}{3-u}:
Direct substitution results in an indeterminate form, so factor the numerator:
limu39u23u=limu3(3u)(3+u)3u \lim_{u \to 3} \frac{9 - u^2}{3 - u} = \lim_{u \to 3} \frac{(3 - u)(3 + u)}{3 - u}

STEP 31

Cancel the common factor:
=limu3(3+u) = \lim_{u \to 3} (3 + u)

STEP 32

Substitute u=3u = 3:
=3+3 = 3 + 3 =6 = 6

STEP 33

Evaluate limx22xx24\lim _{x \rightarrow 2} \frac{2-x}{x^{2}-4}:
Direct substitution results in an indeterminate form, so factor the denominator:
limx22xx24=limx22x(x2)(x+2) \lim_{x \to 2} \frac{2 - x}{x^2 - 4} = \lim_{x \to 2} \frac{2 - x}{(x - 2)(x + 2)}

STEP 34

Notice that 2x=(x2)2 - x = -(x - 2), so rewrite the expression:
=limx2(x2)(x2)(x+2) = \lim_{x \to 2} \frac{-(x - 2)}{(x - 2)(x + 2)}

STEP 35

Cancel the common factor:
=limx21x+2 = \lim_{x \to 2} \frac{-1}{x + 2}

STEP 36

Substitute x=2x = 2:
=12+2 = \frac{-1}{2 + 2} =14 = \frac{-1}{4}

STEP 37

Evaluate limx1(x1)2x21\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{x^{2}-1}:
Direct substitution results in an indeterminate form, so factor the denominator:
limx1(x1)2x21=limx1(x1)2(x1)(x+1) \lim_{x \to 1} \frac{(x - 1)^2}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)^2}{(x - 1)(x + 1)}

STEP 38

Cancel the common factor:
=limx1x1x+1 = \lim_{x \to 1} \frac{x - 1}{x + 1}

STEP 39

Substitute x=1x = 1:
=111+1 = \frac{1 - 1}{1 + 1} =02 = \frac{0}{2} =0 = 0

STEP 40

Evaluate limx4x+416x2\lim _{x \rightarrow-4} \frac{x+4}{16-x^{2}}:
Direct substitution results in an indeterminate form, so factor the denominator:
limx4x+416x2=limx4x+4(4x)(4+x) \lim_{x \to -4} \frac{x + 4}{16 - x^2} = \lim_{x \to -4} \frac{x + 4}{(4 - x)(4 + x)}

STEP 41

Notice that 16x2=(4x)(4+x)16 - x^2 = (4 - x)(4 + x), so rewrite the expression:
=limx414x = \lim_{x \to -4} \frac{1}{4 - x}

STEP 42

Substitute x=4x = -4:
=14+4 = \frac{1}{4 + 4} =18 = \frac{1}{8}

STEP 43

Evaluate limx1/21x2x212x\lim _{x \rightarrow 1 / 2} \frac{1-x-2 x^{2}}{1-2 x}:
Direct substitution is possible since the function is a polynomial and rational function:
limx121x2x212x=1122(12)212(12) \lim_{x \to \frac{1}{2}} \frac{1 - x - 2x^2}{1 - 2x} = \frac{1 - \frac{1}{2} - 2\left(\frac{1}{2}\right)^2}{1 - 2\left(\frac{1}{2}\right)}

STEP 44

Simplify the expression:
=1121211 = \frac{1 - \frac{1}{2} - \frac{1}{2}}{1 - 1}
Since the denominator is zero, the limit does not exist.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord