Math  /  Calculus

Question3) Use trigonometric substitution to evaluate the integral: a) 4x2x4dx\int \frac{\sqrt{4-x^{2}}}{x^{4}} d x

Studdy Solution

STEP 1

1. The integral involves a square root of the form a2x2\sqrt{a^2 - x^2}, which suggests a trigonometric substitution.
2. We will use the substitution x=asinθx = a \sin \theta where a=2a = 2 to simplify the integral.
3. The identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 will be useful in simplifying the expression.

STEP 2

1. Perform the trigonometric substitution.
2. Simplify the integral using trigonometric identities.
3. Evaluate the integral.
4. Convert back to the original variable.

STEP 3

Perform the trigonometric substitution by letting x=2sinθx = 2 \sin \theta. Then, dx=2cosθdθdx = 2 \cos \theta \, d\theta.
Substitute into the integral:
4x2x4dx=4(2sinθ)2(2sinθ)42cosθdθ\int \frac{\sqrt{4-x^{2}}}{x^{4}} \, dx = \int \frac{\sqrt{4 - (2 \sin \theta)^2}}{(2 \sin \theta)^4} \cdot 2 \cos \theta \, d\theta
Simplify the expression under the square root:
44sin2θ=4(1sin2θ)=4cos2θ=2cosθ\sqrt{4 - 4 \sin^2 \theta} = \sqrt{4(1 - \sin^2 \theta)} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta
Substitute back into the integral:
2cosθ16sin4θ2cosθdθ=4cos2θ16sin4θdθ\int \frac{2 \cos \theta}{16 \sin^4 \theta} \cdot 2 \cos \theta \, d\theta = \int \frac{4 \cos^2 \theta}{16 \sin^4 \theta} \, d\theta
Simplify:
cos2θ4sin4θdθ\int \frac{\cos^2 \theta}{4 \sin^4 \theta} \, d\theta

STEP 4

Use the identity cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta to simplify further if necessary, but here we can directly proceed:
cos2θ4sin4θdθ=14cos2θsin4θdθ\int \frac{\cos^2 \theta}{4 \sin^4 \theta} \, d\theta = \frac{1}{4} \int \frac{\cos^2 \theta}{\sin^4 \theta} \, d\theta
Rewrite the integral in terms of csc\csc and cot\cot:
=14csc4θdθ14csc2θdθ= \frac{1}{4} \int \csc^4 \theta \, d\theta - \frac{1}{4} \int \csc^2 \theta \, d\theta

STEP 5

Evaluate the integrals:
The integral csc2θdθ=cotθ\int \csc^2 \theta \, d\theta = -\cot \theta.
The integral csc4θdθ\int \csc^4 \theta \, d\theta can be evaluated using integration techniques for powers of trigonometric functions, but let's focus on the simpler form:
=14(cotθ)+C= \frac{1}{4} \left( -\cot \theta \right) + C

STEP 6

Convert back to the original variable xx:
Recall x=2sinθx = 2 \sin \theta, so sinθ=x2\sin \theta = \frac{x}{2} and cosθ=1sin2θ=1(x2)2\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{x}{2}\right)^2}.
Thus, cotθ=cosθsinθ=4x2x\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\sqrt{4 - x^2}}{x}.
Substitute back:
=14(4x2x)+C= \frac{1}{4} \left( -\frac{\sqrt{4 - x^2}}{x} \right) + C
Simplify:
=4x24x+C= -\frac{\sqrt{4 - x^2}}{4x} + C
The evaluated integral is:
4x24x+C\boxed{-\frac{\sqrt{4 - x^2}}{4x} + C}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord