Math  /  Calculus

Question3) Use Laplace transforms to solve the initial value problem: y+3y+2y=f(t);y(0)=0,y(0)=1y^{\prime \prime}+3 y^{\prime}+2 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=1, where f(t)={0 if t<4(t4)3 if t4f(t)=\left\{\begin{array}{l}0 \text { if } \mathrm{t}<4 \\ (t-4)^{3} \text { if } t \geq 4\end{array}\right. HINT: Do the inversion in two parts like a question on the test.

Studdy Solution

STEP 1

What is this asking? We need to solve a differential equation with an initial value problem using Laplace transforms, where the forcing function f(t)f(t) changes its definition at t=4t=4. Watch out! The piecewise function f(t)f(t) requires careful handling when applying the Laplace transform.
Don't forget those initial conditions!

STEP 2

1. Rewrite f(t)f(t) using the step function
2. Apply the Laplace Transform
3. Solve for Y(s)Y(s)
4. Partial Fraction Decomposition
5. Inverse Laplace Transform

STEP 3

Let's **rewrite** f(t)f(t) using the unit step function, u(t4)u(t-4).
This allows us to express the piecewise function in a single expression, which is much easier to work with when doing Laplace transforms.
So, we have f(t)=(t4)3u(t4)f(t) = (t-4)^3 u(t-4).
This neatly captures the behavior of f(t)f(t), being zero before t=4t=4 and (t4)3(t-4)^3 afterwards!

STEP 4

Now, let's **apply** the Laplace transform to both sides of the differential equation.
Remember the initial conditions y(0)=0y(0) = 0 and y(0)=1y'(0) = 1! L{y}+3L{y}+2L{y}=L{f(t)} \mathcal{L}\{y''\} + 3\mathcal{L}\{y'\} + 2\mathcal{L}\{y\} = \mathcal{L}\{f(t)\}

STEP 5

Using our handy Laplace transform properties, this becomes: s2Y(s)sy(0)y(0)+3(sY(s)y(0))+2Y(s)=L{(t4)3u(t4)} s^2Y(s) - sy(0) - y'(0) + 3(sY(s) - y(0)) + 2Y(s) = \mathcal{L}\{(t-4)^3u(t-4)\}

STEP 6

Substituting the **initial conditions** and using the time-shift property for the Laplace transform of f(t)f(t), we get: s2Y(s)1+3sY(s)+2Y(s)=e4s6s4 s^2Y(s) - 1 + 3sY(s) + 2Y(s) = e^{-4s}\frac{6}{s^4}

STEP 7

Let's **solve** for Y(s)Y(s) by factoring and some algebraic manipulation: Y(s)(s2+3s+2)=1+6e4ss4 Y(s)(s^2 + 3s + 2) = 1 + \frac{6e^{-4s}}{s^4} Y(s)=1s2+3s+2+6e4ss4(s2+3s+2) Y(s) = \frac{1}{s^2 + 3s + 2} + \frac{6e^{-4s}}{s^4(s^2 + 3s + 2)} Y(s)=1(s+1)(s+2)+6e4ss4(s+1)(s+2) Y(s) = \frac{1}{(s+1)(s+2)} + \frac{6e^{-4s}}{s^4(s+1)(s+2)}

STEP 8

Time for **partial fraction decomposition**!
We'll decompose the two parts of Y(s)Y(s) separately.
First: 1(s+1)(s+2)=As+1+Bs+2 \frac{1}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} Solving for AA and BB gives us A=1A = 1 and B=1B = -1.

STEP 9

Now for the second, more involved part: 6s4(s+1)(s+2)=Cs+Ds2+Es3+Fs4+Gs+1+Hs+2 \frac{6}{s^4(s+1)(s+2)} = \frac{C}{s} + \frac{D}{s^2} + \frac{E}{s^3} + \frac{F}{s^4} + \frac{G}{s+1} + \frac{H}{s+2} After a bit of algebra (lots of adding to zero and dividing to one!), we find C=32C = \frac{3}{2}, D=3D = -3, E=3E = 3, F=3F = 3, G=2G = -2, and H=12H = \frac{1}{2}.

STEP 10

Finally, we'll **apply** the inverse Laplace transform to find y(t)y(t): y(t)=L1{Y(s)} y(t) = \mathcal{L}^{-1}\{Y(s)\} y(t)=L1{1s+1}L1{1s+2}+u(t4)L1{3/2s3s2+3s3+3s42s+1+1/2s+2}tt4 y(t) = \mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} - \mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\} + u(t-4)\mathcal{L}^{-1}\left\{\frac{3/2}{s} - \frac{3}{s^2} + \frac{3}{s^3} + \frac{3}{s^4} - \frac{2}{s+1} + \frac{1/2}{s+2}\right\}\bigg|_{t \to t-4}

STEP 11

Using the inverse Laplace transform properties, we get our **solution**: y(t)=ete2t+u(t4)(323(t4)+32(t4)2+12(t4)32e(t4)+12e2(t4)) y(t) = e^{-t} - e^{-2t} + u(t-4)\left(\frac{3}{2} - 3(t-4) + \frac{3}{2}(t-4)^2 + \frac{1}{2}(t-4)^3 - 2e^{-(t-4)} + \frac{1}{2}e^{-2(t-4)}\right)

STEP 12

y(t)=ete2t+u(t4)(323(t4)+32(t4)2+12(t4)32e(t4)+12e2(t4)) y(t) = e^{-t} - e^{-2t} + u(t-4)\left(\frac{3}{2} - 3(t-4) + \frac{3}{2}(t-4)^2 + \frac{1}{2}(t-4)^3 - 2e^{-(t-4)} + \frac{1}{2}e^{-2(t-4)}\right)

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord