Math  /  Trigonometry

Question3) Solve the following trigonometric equations within the domain [0,2π][0,2 \pi]. Round to the nearest tenth and use radians.  a) 2sin2x1=02sin3x2=12sinx=±12 or \text { a) } \begin{array}{l} 2 \sin ^{2} x-1=0 \\ \frac{2 \sin ^{3} x}{2}=\frac{1}{2} \\ \sin x= \pm \frac{1}{\sqrt{2}} \\ \text { or } \end{array} (2sinx1)(2sinx+1)(\sqrt{2} \sin x-1)(\sqrt{2} \sin x+1) 2sinx=12sinx=1\sqrt{2} \sin x=1 \quad \sqrt{2} \sin x=-1 sinx=12sinx=12\sin x=\frac{1}{\sqrt{2}} \quad \sin x=-\frac{1}{\sqrt{2}} x=π4x=π4x=\frac{\pi}{4} \quad x=\frac{\pi}{4}  b) csc2x+2cscx3=0csc2x1cscx+3cscx3=0cscx(cscx1)3(cscx1)=0cscx+3=0cscx1=0cscx=3cscx=11sinx=31sinx=1sinx=13sinx=11sin1x=0.340x=π2\begin{array}{ll} \text { b) } \csc ^{2} x+2 \csc x-3=0 \\ \csc ^{2} x-1 \csc x+3 \csc x-3=0 \\ \csc x(\csc x-1) & 3(\csc x-1)=0 \\ \csc x+3=0 & \csc x-1=0 \\ \csc x=-3 & \csc x=1 \\ \frac{1}{\sin _{x}}=-3 & \frac{1}{\sin x}=1 \\ \sin x=\frac{1}{-3} & \sin x=\frac{1}{1} \\ \sin ^{-1} x=0.340 & x=\frac{\pi}{2} \end{array} c) cosxcos2x=1/2\cos x-\cos 2 x=1 / 2

Studdy Solution

STEP 1

1. We are solving trigonometric equations within the domain [0,2π][0, 2\pi].
2. Solutions should be rounded to the nearest tenth and expressed in radians.

STEP 2

1. Solve equation (a) for sinx \sin x .
2. Solve equation (b) for cscx \csc x .
3. Solve equation (c) for cosx \cos x .

STEP 3

For equation (a), start with the given equation:
2sin2x1=0 2 \sin^2 x - 1 = 0
Rearrange the equation to solve for sin2x\sin^2 x:
2sin2x=1 2 \sin^2 x = 1 sin2x=12 \sin^2 x = \frac{1}{2}
Take the square root of both sides to solve for sinx\sin x:
sinx=±12 \sin x = \pm \frac{1}{\sqrt{2}}

STEP 4

Find the values of x x within the domain [0,2π][0, 2\pi] where sinx=12\sin x = \frac{1}{\sqrt{2}} and sinx=12\sin x = -\frac{1}{\sqrt{2}}.
For sinx=12\sin x = \frac{1}{\sqrt{2}}:
x=π4,3π4 x = \frac{\pi}{4}, \frac{3\pi}{4}
For sinx=12\sin x = -\frac{1}{\sqrt{2}}:
x=5π4,7π4 x = \frac{5\pi}{4}, \frac{7\pi}{4}

STEP 5

For equation (b), start with the given equation:
csc2x+2cscx3=0 \csc^2 x + 2 \csc x - 3 = 0
Let y=cscx y = \csc x . The equation becomes:
y2+2y3=0 y^2 + 2y - 3 = 0
Factor the quadratic equation:
(y+3)(y1)=0 (y + 3)(y - 1) = 0
Solve for y y :
y=3ory=1 y = -3 \quad \text{or} \quad y = 1
Since y=cscx y = \csc x , we have:
cscx=3orcscx=1 \csc x = -3 \quad \text{or} \quad \csc x = 1

STEP 6

Convert cscx\csc x to sinx\sin x:
For cscx=3\csc x = -3:
sinx=13 \sin x = -\frac{1}{3}
For cscx=1\csc x = 1:
sinx=1 \sin x = 1
Find the values of x x within the domain [0,2π][0, 2\pi]:
For sinx=1\sin x = 1:
x=π2 x = \frac{\pi}{2}
For sinx=13\sin x = -\frac{1}{3}, use a calculator to find:
x3.48radians x \approx 3.48 \, \text{radians}

STEP 7

For equation (c), start with the given equation:
cosxcos2x=12 \cos x - \cos 2x = \frac{1}{2}
Use the double angle identity cos2x=2cos2x1\cos 2x = 2\cos^2 x - 1 to rewrite the equation:
cosx(2cos2x1)=12 \cos x - (2\cos^2 x - 1) = \frac{1}{2}
Simplify:
cosx2cos2x+1=12 \cos x - 2\cos^2 x + 1 = \frac{1}{2}
Rearrange the equation:
2cos2x+cosx+12=0 -2\cos^2 x + \cos x + \frac{1}{2} = 0
Multiply through by 1-1 to make it easier to factor:
2cos2xcosx12=0 2\cos^2 x - \cos x - \frac{1}{2} = 0

STEP 8

Factor the quadratic equation:
(2cosx+1)(cosx12)=0 (2\cos x + 1)(\cos x - \frac{1}{2}) = 0
Solve for cosx\cos x:
cosx=12orcosx=12 \cos x = -\frac{1}{2} \quad \text{or} \quad \cos x = \frac{1}{2}
Find the values of x x within the domain [0,2π][0, 2\pi]:
For cosx=12\cos x = -\frac{1}{2}:
x=2π3,4π3 x = \frac{2\pi}{3}, \frac{4\pi}{3}
For cosx=12\cos x = \frac{1}{2}:
x=π3,5π3 x = \frac{\pi}{3}, \frac{5\pi}{3}
The solutions for each part are:
a) x=π4,3π4,5π4,7π4 x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}
b) x3.48,π2 x \approx 3.48, \frac{\pi}{2}
c) x=2π3,4π3,π3,5π3 x = \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{\pi}{3}, \frac{5\pi}{3}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord