Math  /  Calculus

Question[3 marks] (b) Consider a function f(x)=12xf(x)=\frac{1}{2-\sqrt{x}}. Find limxf(x)\lim _{x \rightarrow \infty} f(x) and state the equation of horizontal asymptotes for f(x)f(x). [3 marks]

Studdy Solution

STEP 1

1. We are given the function f(x)=12x f(x) = \frac{1}{2 - \sqrt{x}} .
2. We need to find the limit of f(x) f(x) as x x \rightarrow \infty .
3. We need to determine the equation of any horizontal asymptotes for f(x) f(x) .

STEP 2

1. Analyze the behavior of x \sqrt{x} as x x \rightarrow \infty .
2. Determine the limit of the denominator 2x 2 - \sqrt{x} as x x \rightarrow \infty .
3. Calculate the limit of f(x)=12x f(x) = \frac{1}{2 - \sqrt{x}} as x x \rightarrow \infty .
4. State the equation of the horizontal asymptote based on the limit.

STEP 3

Analyze the behavior of x \sqrt{x} as x x \rightarrow \infty :
As x x \rightarrow \infty , x \sqrt{x} \rightarrow \infty .

STEP 4

Determine the limit of the denominator 2x 2 - \sqrt{x} as x x \rightarrow \infty :
limx(2x)=2= \lim_{x \rightarrow \infty} (2 - \sqrt{x}) = 2 - \infty = -\infty

STEP 5

Calculate the limit of f(x)=12x f(x) = \frac{1}{2 - \sqrt{x}} as x x \rightarrow \infty :
limxf(x)=limx12x=1=0 \lim_{x \rightarrow \infty} f(x) = \lim_{x \rightarrow \infty} \frac{1}{2 - \sqrt{x}} = \frac{1}{-\infty} = 0

STEP 6

State the equation of the horizontal asymptote based on the limit:
Since limxf(x)=0 \lim_{x \rightarrow \infty} f(x) = 0 , the horizontal asymptote is y=0 y = 0 .
The limit of f(x) f(x) as x x \rightarrow \infty is 0 0 , and the equation of the horizontal asymptote is:
y=0 y = 0

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord