Math  /  Calculus

Question29. 19x1xdx\int_{1}^{9} \frac{x-1}{\sqrt{x}} d x
30. 02(y1)(2y+1)dy\int_{0}^{2}(y-1)(2 y+1) d y
31. 0π/4sec2tdt\int_{0}^{\pi / 4} \sec ^{2} t d t
32. 0π/4secθtanθdθ\int_{0}^{\pi / 4} \sec \theta \tan \theta d \theta
33. 12(1+2y)2dy\int_{1}^{2}(1+2 y)^{2} d y
34. 03(2sinxex)dx\int_{0}^{3}\left(2 \sin x-e^{x}\right) d x

Studdy Solution

STEP 1

1. Simplify the integrand.
2. Integrate term by term.
3. Evaluate the definite integral.
4. 1. Expand the integrand.
2. Integrate term by term.
3. Evaluate the definite integral.

STEP_1: High_Level_Step: 1
Expand the integrand:
(y1)(2y+1)=2y2+y2y1=2y2y1(y-1)(2y+1) = 2y^2 + y - 2y - 1 = 2y^2 - y - 1
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2
Integrate term by term:
(2y2y1)dy=2y2dyydy1dy\int (2y^2 - y - 1) \, dy = \int 2y^2 \, dy - \int y \, dy - \int 1 \, dy
=23y312y2y= \frac{2}{3}y^3 - \frac{1}{2}y^2 - y
High_Level_Step_Completed: TRUE
STEP_3: High_Level_Step: 3
Evaluate the definite integral from 0 to 2:
[23y312y2y]02\left[ \frac{2}{3}y^3 - \frac{1}{2}y^2 - y \right]_{0}^{2}
=(23(2)312(2)2(2))(23(0)312(0)2(0))= \left( \frac{2}{3}(2)^3 - \frac{1}{2}(2)^2 - (2) \right) - \left( \frac{2}{3}(0)^3 - \frac{1}{2}(0)^2 - (0) \right)
=(23(8)12(4)2)= \left( \frac{2}{3}(8) - \frac{1}{2}(4) - 2 \right)
=(16322)= \left( \frac{16}{3} - 2 - 2 \right)
=1634=163123=43= \frac{16}{3} - 4 = \frac{16}{3} - \frac{12}{3} = \frac{4}{3}
High_Level_Step_Completed: TRUE
The value of the integral is:
43\boxed{\frac{4}{3}}
**Problem 31:**
0π/4sec2tdt\int_{0}^{\pi / 4} \sec^2 t \, dt
_HIGH_LEVEL_APPROACH_:
1. Recognize the antiderivative.
2. Evaluate the definite integral.

STEP_1: High_Level_Step: 1
Recognize the antiderivative:
The antiderivative of sec2t\sec^2 t is tant\tan t.
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2
Evaluate the definite integral from 0 to π/4\pi/4:
[tant]0π/4\left[ \tan t \right]_{0}^{\pi/4}
=tan(π4)tan(0)= \tan\left(\frac{\pi}{4}\right) - \tan(0)
=10=1= 1 - 0 = 1
High_Level_Step_Completed: TRUE
The value of the integral is:
1\boxed{1}
**Problem 32:**
0π/4secθtanθdθ\int_{0}^{\pi / 4} \sec \theta \tan \theta \, d\theta
_HIGH_LEVEL_APPROACH_:
1. Recognize the antiderivative.
2. Evaluate the definite integral.

STEP_1: High_Level_Step: 1
Recognize the antiderivative:
The antiderivative of secθtanθ\sec \theta \tan \theta is secθ\sec \theta.
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2
Evaluate the definite integral from 0 to π/4\pi/4:
[secθ]0π/4\left[ \sec \theta \right]_{0}^{\pi/4}
=sec(π4)sec(0)= \sec\left(\frac{\pi}{4}\right) - \sec(0)
=21= \sqrt{2} - 1
High_Level_Step_Completed: TRUE
The value of the integral is:
21\boxed{\sqrt{2} - 1}
**Problem 33:**
12(1+2y)2dy\int_{1}^{2}(1+2y)^{2} \, dy
_HIGH_LEVEL_APPROACH_:
1. Expand the integrand.
2. Integrate term by term.
3. Evaluate the definite integral.

STEP_1: High_Level_Step: 1
Expand the integrand:
(1+2y)2=1+4y+4y2(1+2y)^{2} = 1 + 4y + 4y^2
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2
Integrate term by term:
(1+4y+4y2)dy=1dy+4ydy+4y2dy\int (1 + 4y + 4y^2) \, dy = \int 1 \, dy + \int 4y \, dy + \int 4y^2 \, dy
=y+2y2+43y3= y + 2y^2 + \frac{4}{3}y^3
High_Level_Step_Completed: TRUE
STEP_3: High_Level_Step: 3
Evaluate the definite integral from 1 to 2:
[y+2y2+43y3]12\left[ y + 2y^2 + \frac{4}{3}y^3 \right]_{1}^{2}
=(2+2(2)2+43(2)3)(1+2(1)2+43(1)3)= \left( 2 + 2(2)^2 + \frac{4}{3}(2)^3 \right) - \left( 1 + 2(1)^2 + \frac{4}{3}(1)^3 \right)
=(2+8+323)(1+2+43)= \left( 2 + 8 + \frac{32}{3} \right) - \left( 1 + 2 + \frac{4}{3} \right)
=(10+323)(3+43)= \left( 10 + \frac{32}{3} \right) - \left( 3 + \frac{4}{3} \right)
=303+3239343= \frac{30}{3} + \frac{32}{3} - \frac{9}{3} - \frac{4}{3}
=623133=493= \frac{62}{3} - \frac{13}{3} = \frac{49}{3}
High_Level_Step_Completed: TRUE
The value of the integral is:
493\boxed{\frac{49}{3}}
**Problem 34:**
03(2sinxex)dx\int_{0}^{3}\left(2 \sin x - e^{x}\right) \, dx
_HIGH_LEVEL_APPROACH_:
1. Integrate term by term.
2. Evaluate the definite integral.

STEP_1: High_Level_Step: 1
Integrate term by term:
(2sinxex)dx=2sinxdxexdx\int \left(2 \sin x - e^{x}\right) \, dx = \int 2 \sin x \, dx - \int e^{x} \, dx
The antiderivative of 2sinx2 \sin x is 2cosx-2 \cos x, and the antiderivative of exe^{x} is exe^{x}.
=2cosxex= -2 \cos x - e^{x}
High_Level_Step_Completed: TRUE
STEP_2: High_Level_Step: 2
Evaluate the definite integral from 0 to 3:
[2cosxex]03\left[ -2 \cos x - e^{x} \right]_{0}^{3}
=(2cos(3)e3)(2cos(0)e0)= \left( -2 \cos(3) - e^{3} \right) - \left( -2 \cos(0) - e^{0} \right)
=(2cos(3)e3)(2(1)1)= \left( -2 \cos(3) - e^{3} \right) - \left( -2(1) - 1 \right)
=2cos(3)e3+2+1= -2 \cos(3) - e^{3} + 2 + 1
=2cos(3)e3+3= -2 \cos(3) - e^{3} + 3
High_Level_Step_Completed: TRUE
The value of the integral is:
2cos(3)e3+3\boxed{-2 \cos(3) - e^{3} + 3}

STEP 2

Simplify the integrand:
x1x=xx1x=x1/2x1/2\frac{x-1}{\sqrt{x}} = \frac{x}{\sqrt{x}} - \frac{1}{\sqrt{x}} = x^{1/2} - x^{-1/2}

STEP 3

Integrate term by term:
(x1/2x1/2)dx=x1/2dxx1/2dx\int (x^{1/2} - x^{-1/2}) \, dx = \int x^{1/2} \, dx - \int x^{-1/2} \, dx
=x3/23/2x1/21/2=23x3/22x1/2= \frac{x^{3/2}}{3/2} - \frac{x^{1/2}}{1/2} = \frac{2}{3}x^{3/2} - 2x^{1/2}

STEP 4

Evaluate the definite integral from 1 to 9:
[23x3/22x1/2]19\left[ \frac{2}{3}x^{3/2} - 2x^{1/2} \right]_{1}^{9}
=(23(9)3/22(9)1/2)(23(1)3/22(1)1/2)= \left( \frac{2}{3}(9)^{3/2} - 2(9)^{1/2} \right) - \left( \frac{2}{3}(1)^{3/2} - 2(1)^{1/2} \right)
=(23(27)2(3))(23(1)2(1))= \left( \frac{2}{3}(27) - 2(3) \right) - \left( \frac{2}{3}(1) - 2(1) \right)
=(186)(232)= \left( 18 - 6 \right) - \left( \frac{2}{3} - 2 \right)
=12(2363)= 12 - \left( \frac{2}{3} - \frac{6}{3} \right)
=12(43)= 12 - \left( -\frac{4}{3} \right)
=12+43=363+43=403= 12 + \frac{4}{3} = \frac{36}{3} + \frac{4}{3} = \frac{40}{3}
The value of the integral is:
403\boxed{\frac{40}{3}}
**Problem 30:**
02(y1)(2y+1)dy\int_{0}^{2}(y-1)(2y+1) \, dy

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord