Math  /  Algebra

Question23. Let A=[61236]A=\left[\begin{array}{rr}-6 & 12 \\ -3 & 6\end{array}\right] and w=[21]w=\left[\begin{array}{l}2 \\ 1\end{array}\right]. Determine if ww is in Col Al Is in in Nol A?
24. Let A=[829648404]A=\left[\begin{array}{rrr}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right] and w=[212]w=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]. Determine if w is in ColA\mathrm{Col} A. Is w in Nul A?

In Exercises 15 and 16 , find AA ouch that the given set is ColA\operatorname{Col} A
15. {[2s+3tr+s2t4r+s3rst]:r,s,t\left\{\left[\begin{array}{c}2 s+3 t \\ r+s-2 t \\ 4 r+s \\ 3 r-s-t\end{array}\right]: r, s, t\right. real }\}
16. {[bc2b+c+d5c4dd]:b,c,d\left\{\left[\begin{array}{c}b-c \\ 2 b+c+d \\ 5 c-4 d \\ d\end{array}\right]: b, c, d\right. real }\}

Studdy Solution

STEP 1

1. A vector w w is in the column space of a matrix A A if there exists a vector x x such that Ax=w Ax = w .
2. A vector w w is in the null space of a matrix A A if Aw=0 Aw = 0 .
3. For problems involving column space, we need to check if the vector w w can be expressed as a linear combination of the columns of A A .
4. For problems involving null space, we need to check if multiplying A A by w w results in the zero vector.
5. To find a matrix A A such that a given set is ColA\operatorname{Col} A, we need to express the given vectors as columns of A A .

STEP 2

1. Problem 23: Determine if w w is in ColA\operatorname{Col} A.
2. Problem 23: Determine if w w is in NulA\operatorname{Nul} A.
3. Problem 24: Determine if w w is in ColA\operatorname{Col} A.
4. Problem 24: Determine if w w is in NulA\operatorname{Nul} A.
5. Problem 15: Find matrix A A such that the given set is ColA\operatorname{Col} A.
6. Problem 16: Find matrix A A such that the given set is ColA\operatorname{Col} A.

STEP 3

For Problem 23, check if w=[21] w = \begin{bmatrix} 2 \\ 1 \end{bmatrix} is in ColA\operatorname{Col} A where A=[61236] A = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix} .
To determine this, solve the matrix equation Ax=w Ax = w :
[61236][x1x2]=[21]\begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}
This results in the system of equations:
6x1+12x2=2-6x_1 + 12x_2 = 2 3x1+6x2=1-3x_1 + 6x_2 = 1
Check for consistency by solving this system.

STEP 4

Solve the system using row reduction or substitution. Notice that the second equation is a multiple of the first:
Divide the first equation by 2:
3x1+6x2=1-3x_1 + 6x_2 = 1
This matches the second equation, confirming consistency. Therefore, w w is in ColA\operatorname{Col} A.

STEP 5

For Problem 23, check if w=[21] w = \begin{bmatrix} 2 \\ 1 \end{bmatrix} is in NulA\operatorname{Nul} A.
Calculate Aw Aw :
A[21]=[61236][21]=[6(2)+12(1)3(2)+6(1)]=[00]A \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -6 & 12 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -6(2) + 12(1) \\ -3(2) + 6(1) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
Since Aw=0 Aw = 0 , w w is in NulA\operatorname{Nul} A.

STEP 6

For Problem 24, check if w=[212] w = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} is in ColA\operatorname{Col} A where A=[829648404] A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix} .
Solve the matrix equation Ax=w Ax = w :
[829648404][x1x2x3]=[212]\begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}
Check for consistency by solving this system using row reduction.

STEP 7

Perform row reduction on the augmented matrix:
[829264814042]\left[\begin{array}{ccc|c} -8 & -2 & -9 & 2 \\ 6 & 4 & 8 & 1 \\ 4 & 0 & 4 & -2 \end{array}\right]
After row reduction, if the system is consistent, w w is in ColA\operatorname{Col} A. If not, it is not.

STEP 8

For Problem 24, check if w=[212] w = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} is in NulA\operatorname{Nul} A.
Calculate Aw Aw :
A[212]=[829648404][212]A \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}
Compute the result and check if it equals the zero vector.

STEP 9

For Problem 15, find matrix A A such that the given set is ColA\operatorname{Col} A:
The set is:
{[2s+3tr+s2t4r+s3rst]:r,s,t real}\left\{\begin{bmatrix} 2s + 3t \\ r + s - 2t \\ 4r + s \\ 3r - s - t \end{bmatrix} : r, s, t \text{ real} \right\}
Express each vector in terms of r,s,t r, s, t and form columns of A A .

STEP 10

The columns of A A are the coefficients of r,s,t r, s, t :
A=[023112410311]A = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & -1 \end{bmatrix}

STEP 11

For Problem 16, find matrix A A such that the given set is ColA\operatorname{Col} A:
The set is:
{[bc2b+c+d5c4dd]:b,c,d real}\left\{\begin{bmatrix} b - c \\ 2b + c + d \\ 5c - 4d \\ d \end{bmatrix} : b, c, d \text{ real} \right\}
Express each vector in terms of b,c,d b, c, d and form columns of A A .

STEP 12

The columns of A A are the coefficients of b,c,d b, c, d :
A=[110211054001]A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 5 & -4 \\ 0 & 0 & 1 \end{bmatrix}
The solutions to the problems are as follows: - Problem 23: w w is in both ColA\operatorname{Col} A and NulA\operatorname{Nul} A. - Problem 24: Check row reduction for ColA\operatorname{Col} A and compute Aw Aw for NulA\operatorname{Nul} A. - Problem 15: A=[023112410311] A = \begin{bmatrix} 0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & -1 \end{bmatrix} . - Problem 16: A=[110211054001] A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 1 \\ 0 & 5 & -4 \\ 0 & 0 & 1 \end{bmatrix} .

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord