Math  /  Data & Statistics

Question2XN(μ,152)2 X \sim N\left(\mu, 15^{2}\right). Given that P(X<90)=0.1P(X<90)=0.1, determine μ\mu. 3XN(40,σ2)3 X \sim N\left(40, \sigma^{2}\right). Given that P(X>50)=0.01P(X>50)=0.01, determine μ\mu. 4XN(μ,σ2)4 X \sim N\left(\mu, \sigma^{2}\right). Given that P(X<5)=0.05P(X<5)=0.05 and P(X>10)=0.01P(X>10)=0.01, determine μ\mu and σ\sigma.

Studdy Solution

STEP 1

1. 2X2X, 3X3X, and 4X4X are normally distributed random variables.
2. The properties of normal distribution and standard normal distribution (Z-scores) will be used.
3. The cumulative distribution function (CDF) and its inverse (quantile function) are applicable.

STEP 2

1. Solve for μ\mu in the equation 2XN(μ,152)2X \sim N(\mu, 15^2) given P(X<90)=0.1P(X<90)=0.1.
2. Solve for μ\mu in the equation 3XN(40,σ2)3X \sim N(40, \sigma^2) given P(X>50)=0.01P(X>50)=0.01.
3. Solve for μ\mu and σ\sigma in the equation 4XN(μ,σ2)4X \sim N(\mu, \sigma^2) given P(X<5)=0.05P(X<5)=0.05 and P(X>10)=0.01P(X>10)=0.01.

STEP 3

Given 2XN(μ,152)2X \sim N(\mu, 15^2), find the equivalent distribution for XX:
XN(μ2,(152)2) X \sim N\left(\frac{\mu}{2}, \left(\frac{15}{2}\right)^2\right)

STEP 4

Use the standard normal distribution to find the Z-score corresponding to P(X<90)=0.1P(X<90)=0.1:
Z=90μ2152 Z = \frac{90 - \frac{\mu}{2}}{\frac{15}{2}}
From standard normal tables, Z1.2816Z \approx -1.2816.

STEP 5

Solve for μ\mu:
1.2816=90μ2152 -1.2816 = \frac{90 - \frac{\mu}{2}}{\frac{15}{2}}
μ=2(90+1.2816×152) \mu = 2 \left(90 + 1.2816 \times \frac{15}{2}\right)
μ180+19.224=199.224 \mu \approx 180 + 19.224 = 199.224

STEP 6

Given 3XN(40,σ2)3X \sim N(40, \sigma^2), find the equivalent distribution for XX:
XN(403,(σ3)2) X \sim N\left(\frac{40}{3}, \left(\frac{\sigma}{3}\right)^2\right)

STEP 7

Use the standard normal distribution to find the Z-score corresponding to P(X>50)=0.01P(X>50)=0.01:
Z=50403σ3 Z = \frac{50 - \frac{40}{3}}{\frac{\sigma}{3}}
From standard normal tables, Z2.3263Z \approx 2.3263.

STEP 8

Solve for σ\sigma:
2.3263=50403σ3 2.3263 = \frac{50 - \frac{40}{3}}{\frac{\sigma}{3}}
σ=3×504032.3263 \sigma = 3 \times \frac{50 - \frac{40}{3}}{2.3263}
σ3×1103×2.3263 \sigma \approx 3 \times \frac{110}{3 \times 2.3263}
σ47.32 \sigma \approx 47.32

STEP 9

Given 4XN(μ,σ2)4X \sim N(\mu, \sigma^2), use the conditions P(X<5)=0.05P(X<5)=0.05 and P(X>10)=0.01P(X>10)=0.01 to set up two equations:
For P(X<5)=0.05P(X<5)=0.05:
Z1=5μσ Z_1 = \frac{5 - \mu}{\sigma}
From standard normal tables, Z11.6449Z_1 \approx -1.6449.
For P(X>10)=0.01P(X>10)=0.01:
Z2=10μσ Z_2 = \frac{10 - \mu}{\sigma}
From standard normal tables, Z22.3263Z_2 \approx 2.3263.

STEP 10

Solve the system of equations for μ\mu and σ\sigma:
1.6449=5μσ -1.6449 = \frac{5 - \mu}{\sigma}
2.3263=10μσ 2.3263 = \frac{10 - \mu}{\sigma}
Solve these equations simultaneously to find μ\mu and σ\sigma.

STEP 11

Subtract the first equation from the second:
2.3263+1.6449=105σ 2.3263 + 1.6449 = \frac{10 - 5}{\sigma}
σ=53.9712 \sigma = \frac{5}{3.9712}
σ1.259 \sigma \approx 1.259
Substitute σ\sigma back into one of the equations to find μ\mu:
1.6449=5μ1.259 -1.6449 = \frac{5 - \mu}{1.259}
μ=5+1.6449×1.259 \mu = 5 + 1.6449 \times 1.259
μ6.07 \mu \approx 6.07
The solutions are:
1. For 2X2X, μ199.224\mu \approx 199.224.
2. For 3X3X, σ47.32\sigma \approx 47.32.
3. For 4X4X, μ6.07\mu \approx 6.07 and σ1.259\sigma \approx 1.259.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord