Math  /  Algebra

Question2. Solve algebraically. Check each solution. a) x310=4x\frac{x-3}{10}=4 x b) 3x2=5x\frac{3}{x}-2=\frac{5}{x} c) 3x+21x=15x\frac{3}{x+2}-\frac{1}{x}=\frac{1}{5 x}

Studdy Solution

STEP 1

1. We are dealing with algebraic equations involving fractions.
2. We will need to isolate the variable x x in each equation.
3. We will check each solution to ensure it satisfies the original equation.

STEP 2

1. Solve equation (a) for x x .
2. Solve equation (b) for x x .
3. Solve equation (c) for x x .
4. Check each solution to verify correctness.

STEP 3

For equation (a) x310=4x\frac{x-3}{10} = 4x, first eliminate the fraction by multiplying both sides by 10:
x310=4x \frac{x-3}{10} = 4x x3=40x x - 3 = 40x

STEP 4

Rearrange the equation to isolate x x :
x40x=3 x - 40x = 3 39x=3 -39x = 3
Divide both sides by 39-39:
x=339 x = -\frac{3}{39} x=113 x = -\frac{1}{13}

STEP 5

For equation (b) 3x2=5x\frac{3}{x} - 2 = \frac{5}{x}, first get a common denominator:
3x5x=2 \frac{3}{x} - \frac{5}{x} = 2 35x=2 \frac{3 - 5}{x} = 2 2x=2 \frac{-2}{x} = 2

STEP 6

Cross-multiply to solve for x x :
2=2x -2 = 2x
Divide both sides by 2:
x=1 x = -1

STEP 7

For equation (c) 3x+21x=15x\frac{3}{x+2} - \frac{1}{x} = \frac{1}{5x}, first find a common denominator for the left side:
3x(x+2)x(x+2)=15x \frac{3x - (x+2)}{x(x+2)} = \frac{1}{5x} 3xx2x(x+2)=15x \frac{3x - x - 2}{x(x+2)} = \frac{1}{5x} 2x2x(x+2)=15x \frac{2x - 2}{x(x+2)} = \frac{1}{5x}

STEP 8

Cross-multiply to solve for x x :
5x(2x2)=x(x+2) 5x(2x - 2) = x(x + 2) 10x210x=x2+2x 10x^2 - 10x = x^2 + 2x
Rearrange the equation:
10x210xx22x=0 10x^2 - 10x - x^2 - 2x = 0 9x212x=0 9x^2 - 12x = 0
Factor out the common term:
3x(3x4)=0 3x(3x - 4) = 0
Set each factor to zero:
3x=0or3x4=0 3x = 0 \quad \text{or} \quad 3x - 4 = 0 x=0orx=43 x = 0 \quad \text{or} \quad x = \frac{4}{3}

STEP 9

Check each solution by substituting back into the original equations:
For (a), substitute x=113 x = -\frac{1}{13} into x310=4x\frac{x-3}{10} = 4x: 113310=4(113) \frac{-\frac{1}{13} - 3}{10} = 4(-\frac{1}{13}) 401310=413 \frac{-\frac{40}{13}}{10} = -\frac{4}{13} 413=413 -\frac{4}{13} = -\frac{4}{13} (True)
For (b), substitute x=1 x = -1 into 3x2=5x\frac{3}{x} - 2 = \frac{5}{x}: 312=51 \frac{3}{-1} - 2 = \frac{5}{-1} 32=5 -3 - 2 = -5 5=5 -5 = -5 (True)
For (c), substitute x=0 x = 0 and x=43 x = \frac{4}{3} into 3x+21x=15x\frac{3}{x+2} - \frac{1}{x} = \frac{1}{5x}: x=0 x = 0 is not valid as it causes division by zero. Substitute x=43 x = \frac{4}{3} : 343+2143=15(43) \frac{3}{\frac{4}{3} + 2} - \frac{1}{\frac{4}{3}} = \frac{1}{5(\frac{4}{3})} 310334=320 \frac{3}{\frac{10}{3}} - \frac{3}{4} = \frac{3}{20} 91034=320 \frac{9}{10} - \frac{3}{4} = \frac{3}{20} 18201520=320 \frac{18}{20} - \frac{15}{20} = \frac{3}{20} 320=320 \frac{3}{20} = \frac{3}{20} (True)
The solutions are: a) x=113 x = -\frac{1}{13} b) x=1 x = -1 c) x=43 x = \frac{4}{3}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord