Math  /  Calculus

Question2. Differentiate the following function. (Do not simplify your a) [8pts] f(x)=cos(2x)tan(3x)ex23xf(x)=\cos (2 x) \tan (3 x)-e^{x^{2}-3 x}

Studdy Solution

STEP 1

What is this asking? Find the *derivative* of a function that's a *difference* between a *product* of trigonometric functions and an *exponential* function with a little polynomial inside. Watch out! Don't forget the *chain rule* and *product rule*!
Also, remember the derivatives of tan(x)\tan(x), cos(x)\cos(x), and exe^x.

STEP 2

1. Differentiate the product.
2. Differentiate the exponential.
3. Combine the results.

STEP 3

Alright, let's **tackle** this product first: cos(2x)tan(3x)\cos(2x) \cdot \tan(3x).
We'll use the **product rule**, which says (fg)=fg+fg(f \cdot g)' = f' \cdot g + f \cdot g'.

STEP 4

Let f(x)=cos(2x)f(x) = \cos(2x).
Then f(x)=sin(2x)2=2sin(2x)f'(x) = -\sin(2x) \cdot 2 = -2\sin(2x) by the **chain rule**.
Remember, the derivative of cos(x)\cos(x) is sin(x)-\sin(x)!

STEP 5

Now, let g(x)=tan(3x)g(x) = \tan(3x).
Then g(x)=sec2(3x)3=3sec2(3x)g'(x) = \sec^2(3x) \cdot 3 = 3\sec^2(3x) using the **chain rule** again.
The derivative of tan(x)\tan(x) is sec2(x)\sec^2(x)!

STEP 6

Putting it all together for the product rule: ddx(cos(2x)tan(3x))=2sin(2x)tan(3x)+cos(2x)3sec2(3x)\frac{d}{dx}(\cos(2x)\tan(3x)) = -2\sin(2x) \cdot \tan(3x) + \cos(2x) \cdot 3\sec^2(3x) =2sin(2x)tan(3x)+3cos(2x)sec2(3x).= -2\sin(2x)\tan(3x) + 3\cos(2x)\sec^2(3x).So, the derivative of the **first part** of our function is done!

STEP 7

Now, let's **conquer** the exponential part: ex23xe^{x^2 - 3x}.
We'll use the **chain rule** here.

STEP 8

The derivative of eue^u is eududxe^u \cdot \frac{du}{dx}.
In our case, u=x23xu = x^2 - 3x, so dudx=2x3\frac{du}{dx} = 2x - 3.

STEP 9

Therefore, the derivative of ex23xe^{x^2 - 3x} is ex23x(2x3)=(2x3)ex23xe^{x^2 - 3x} \cdot (2x - 3) = (2x - 3)e^{x^2 - 3x}.
Awesome!

STEP 10

Remember, our original function was f(x)=cos(2x)tan(3x)ex23xf(x) = \cos(2x)\tan(3x) - e^{x^2 - 3x}.
We've found the derivatives of both parts.
Now we just **subtract** them!

STEP 11

f(x)=2sin(2x)tan(3x)+3cos(2x)sec2(3x)(2x3)ex23x.f'(x) = -2\sin(2x)\tan(3x) + 3\cos(2x)\sec^2(3x) - (2x - 3)e^{x^2 - 3x}.

STEP 12

The derivative of f(x)f(x) is f(x)=2sin(2x)tan(3x)+3cos(2x)sec2(3x)(2x3)ex23xf'(x) = -2\sin(2x)\tan(3x) + 3\cos(2x)\sec^2(3x) - (2x - 3)e^{x^2 - 3x}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord