Math  /  Calculus

Question14. Use the table below to find the following values. \begin{tabular}{|c|c|c|c|c|} \hlinexx & f(x)f(x) & g(x)g(x) & f(x)f^{\prime}(x) & g(x)g^{\prime}(x) \\ \hline \hline-1 & -5 & 1 & 3 & 0 \\ \hline 0 & -2 & 0 & 1 & 1 \\ \hline 1 & 0 & -3 & 0 & 0.5 \\ \hline 2 & 5 & -1 & 5 & 2 \\ \hline \end{tabular} (a) Find h(2)h^{\prime}(2) whenh (x)=3g(x)(x)=-3 g(x) (2 pts) (b) Find h(1)h^{\prime}(-1) when h(x)=f(13x)e3xh(x)=f(-1-3 x)-e^{3 x} (2 pts) (c) Find h(2)h^{\prime}(2) when h(x)=x3g(x)(2pts)h(x)=x^{3} g(x)(2 \mathrm{pts}) (d) Find h(0)h^{\prime}(0) whenh (x)=g(12x)f(x)(2pts)(x)=g\left(-\frac{1}{2} x\right) \cdot f(x)(2 \mathrm{pts}) (e) Find h(1)h^{\prime}(1) when h(x)=g(x)(x24)(2pts)h(x)=\frac{g(x)}{\left(x^{2}-4\right)}(2 \mathrm{pts}) (f) Find (f1)(5)\left(f^{-1}\right)^{\prime}(-5) (2 pts)

Studdy Solution

STEP 1

What is this asking? We're finding the derivatives of different functions h(x) h(x) at specific points using the table of values for f(x) f(x) , g(x) g(x) , and their derivatives. Watch out! Be careful with applying the chain rule, product rule, and quotient rule correctly.
Also, double-check the table values for accuracy!

STEP 2

1. Calculate h(2) h^{\prime}(2) for h(x)=3g(x) h(x) = -3g(x)
2. Calculate h(1) h^{\prime}(-1) for h(x)=f(13x)e3x h(x) = f(-1-3x) - e^{3x}
3. Calculate h(2) h^{\prime}(2) for h(x)=x3g(x) h(x) = x^3 g(x)
4. Calculate h(0) h^{\prime}(0) for h(x)=g(12x)f(x) h(x) = g\left(-\frac{1}{2}x\right) \cdot f(x)
5. Calculate h(1) h^{\prime}(1) for h(x)=g(x)x24 h(x) = \frac{g(x)}{x^2 - 4}
6. Calculate (f1)(5)\left(f^{-1}\right)^{\prime}(-5)

STEP 3

First, let's **differentiate** h(x)=3g(x) h(x) = -3g(x) .
The derivative is:
h(x)=3g(x)h^{\prime}(x) = -3g^{\prime}(x)

STEP 4

Now, **substitute** x=2 x = 2 into the derivative:
h(2)=3g(2)h^{\prime}(2) = -3g^{\prime}(2)

STEP 5

From the table, g(2)=2 g^{\prime}(2) = 2 .
So, **calculate**:
h(2)=32=6h^{\prime}(2) = -3 \cdot 2 = -6

STEP 6

Apply the **chain rule** to differentiate f(13x) f(-1-3x) :
ddxf(13x)=f(13x)(3)\frac{d}{dx} f(-1-3x) = f^{\prime}(-1-3x) \cdot (-3)

STEP 7

Differentiate e3x e^{3x} :
ddxe3x=3e3x\frac{d}{dx} e^{3x} = 3e^{3x}

STEP 8

Combine the derivatives:
h(x)=f(13x)(3)3e3xh^{\prime}(x) = f^{\prime}(-1-3x) \cdot (-3) - 3e^{3x}

STEP 9

**Substitute** x=1 x = -1 :
h(1)=f(13(1))(3)3e3(1)h^{\prime}(-1) = f^{\prime}(-1-3(-1)) \cdot (-3) - 3e^{3(-1)}

STEP 10

Simplify the expression:
h(1)=f(2)(3)3e3h^{\prime}(-1) = f^{\prime}(2) \cdot (-3) - 3e^{-3}

STEP 11

From the table, f(2)=5 f^{\prime}(2) = 5 .
So, **calculate**:
h(1)=5(3)3e3=153e3h^{\prime}(-1) = 5 \cdot (-3) - 3e^{-3} = -15 - 3e^{-3}

STEP 12

Use the **product rule**:
h(x)=3x2g(x)+x3g(x)h^{\prime}(x) = 3x^2 g(x) + x^3 g^{\prime}(x)

STEP 13

**Substitute** x=2 x = 2 :
h(2)=3(2)2g(2)+(2)3g(2)h^{\prime}(2) = 3(2)^2 g(2) + (2)^3 g^{\prime}(2)

STEP 14

From the table, g(2)=1 g(2) = -1 and g(2)=2 g^{\prime}(2) = 2 .
So, **calculate**:
h(2)=34(1)+82=12+16=4h^{\prime}(2) = 3 \cdot 4 \cdot (-1) + 8 \cdot 2 = -12 + 16 = 4

STEP 15

Use the **product rule** and **chain rule**:
h(x)=g(12x)(12)f(x)+g(12x)f(x)h^{\prime}(x) = g^{\prime}\left(-\frac{1}{2}x\right) \cdot \left(-\frac{1}{2}\right) \cdot f(x) + g\left(-\frac{1}{2}x\right) \cdot f^{\prime}(x)

STEP 16

**Substitute** x=0 x = 0 :
h(0)=g(0)(12)f(0)+g(0)f(0)h^{\prime}(0) = g^{\prime}(0) \cdot \left(-\frac{1}{2}\right) \cdot f(0) + g(0) \cdot f^{\prime}(0)

STEP 17

From the table, g(0)=0 g(0) = 0 , g(0)=1 g^{\prime}(0) = 1 , f(0)=2 f(0) = -2 , and f(0)=1 f^{\prime}(0) = 1 .
So, **calculate**:
h(0)=1(12)(2)+01=1h^{\prime}(0) = 1 \cdot \left(-\frac{1}{2}\right) \cdot (-2) + 0 \cdot 1 = 1

STEP 18

Use the **quotient rule**:
h(x)=(x24)g(x)g(x)2x(x24)2h^{\prime}(x) = \frac{(x^2 - 4)g^{\prime}(x) - g(x) \cdot 2x}{(x^2 - 4)^2}

STEP 19

**Substitute** x=1 x = 1 :
h(1)=(124)g(1)g(1)21(124)2h^{\prime}(1) = \frac{(1^2 - 4)g^{\prime}(1) - g(1) \cdot 2 \cdot 1}{(1^2 - 4)^2}

STEP 20

From the table, g(1)=3 g(1) = -3 and g(1)=0.5 g^{\prime}(1) = 0.5 .
So, **calculate**:
h(1)=(3)0.5(3)2(3)2=1.5+69=4.59=12h^{\prime}(1) = \frac{(-3) \cdot 0.5 - (-3) \cdot 2}{(-3)^2} = \frac{-1.5 + 6}{9} = \frac{4.5}{9} = \frac{1}{2}

STEP 21

Use the **inverse function derivative formula**:
(f1)(y)=1f(x)wheref(x)=y\left(f^{-1}\right)^{\prime}(y) = \frac{1}{f^{\prime}(x)} \quad \text{where} \quad f(x) = y

STEP 22

From the table, f(1)=5 f(-1) = -5 .
So, x=1 x = -1 .

STEP 23

From the table, f(1)=3 f^{\prime}(-1) = 3 .
So, **calculate**:
(f1)(5)=13\left(f^{-1}\right)^{\prime}(-5) = \frac{1}{3}

STEP 24

(a) h(2)=6 h^{\prime}(2) = -6
(b) h(1)=153e3 h^{\prime}(-1) = -15 - 3e^{-3}
(c) h(2)=4 h^{\prime}(2) = 4
(d) h(0)=1 h^{\prime}(0) = 1
(e) h(1)=12 h^{\prime}(1) = \frac{1}{2}
(f) (f1)(5)=13\left(f^{-1}\right)^{\prime}(-5) = \frac{1}{3}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord