Math  /  Algebra

Question14. Given the following complex numbers find z1+z2,z1z2z_{1}+z_{2}, z_{1} \cdot z_{2} and z1z2\frac{z_{1}}{z_{2}} : z1=34iz2=23+2i\begin{array}{l} z_{1}=-3-4 i \\ z_{2}=-2 \sqrt{3}+2 i \end{array}

Studdy Solution

STEP 1

What is this asking? We're given two complex numbers, z1z_1 and z2z_2, and we need to find their sum, their product, and what happens when we divide z1z_1 by z2z_2. Watch out! Remember that ii=1i \cdot i = -1, and be careful with those negative signs when distributing!
Also, remember how to rationalize the denominator of a complex number by multiplying by its conjugate.

STEP 2

1. Calculate z1+z2z_1 + z_2
2. Calculate z1z2z_1 \cdot z_2
3. Calculate z1z2\frac{z_1}{z_2}

STEP 3

Let's **add** the **real** parts and the **imaginary** parts separately!
We have z1=34iz_1 = -3 - 4i and z2=23+2iz_2 = -2\sqrt{3} + 2i.

STEP 4

Adding the real parts gives us 3+(23)=323-3 + (-2\sqrt{3}) = -3 - 2\sqrt{3}.

STEP 5

Adding the imaginary parts gives us 4i+2i=(4+2)i=2i-4i + 2i = (-4 + 2)i = -2i.

STEP 6

So, z1+z2=(323)+(2i)=3232iz_1 + z_2 = (-3 - 2\sqrt{3}) + (-2i) = -3 - 2\sqrt{3} - 2i.

STEP 7

Now, let's **multiply** z1z_1 and z2z_2 using the distributive property, just like we would with any two binomials!
Remember that ii=1i \cdot i = -1.

STEP 8

We have (34i)(23+2i)=(3)(23)+(3)(2i)+(4i)(23)+(4i)(2i)(-3 - 4i)(-2\sqrt{3} + 2i) = (-3)(-2\sqrt{3}) + (-3)(2i) + (-4i)(-2\sqrt{3}) + (-4i)(2i).

STEP 9

Simplifying each term gives us 636i+83i8i26\sqrt{3} - 6i + 8\sqrt{3}i - 8i^2.

STEP 10

Since i2=1i^2 = -1, we have 636i+83i8(1)=636i+83i+86\sqrt{3} - 6i + 8\sqrt{3}i - 8(-1) = 6\sqrt{3} - 6i + 8\sqrt{3}i + 8.

STEP 11

Combining like terms, we get (8+63)+(836)i(8 + 6\sqrt{3}) + (8\sqrt{3} - 6)i.
So, z1z2=8+63+(836)iz_1 \cdot z_2 = 8 + 6\sqrt{3} + (8\sqrt{3} - 6)i.

STEP 12

To **divide** z1z_1 by z2z_2, we'll multiply both the numerator and denominator by the **conjugate** of the denominator.
The conjugate of 23+2i-2\sqrt{3} + 2i is 232i-2\sqrt{3} - 2i.

STEP 13

So, we have 34i23+2i232i232i\frac{-3 - 4i}{-2\sqrt{3} + 2i} \cdot \frac{-2\sqrt{3} - 2i}{-2\sqrt{3} - 2i}.

STEP 14

Multiplying the numerators gives us (34i)(232i)=(3)(23)+(3)(2i)+(4i)(23)+(4i)(2i)=63+6i+83i+8i2=63+6i+83i8=638+(6+83)i(-3 - 4i)(-2\sqrt{3} - 2i) = (-3)(-2\sqrt{3}) + (-3)(-2i) + (-4i)(-2\sqrt{3}) + (-4i)(-2i) = 6\sqrt{3} + 6i + 8\sqrt{3}i + 8i^2 = 6\sqrt{3} + 6i + 8\sqrt{3}i - 8 = 6\sqrt{3} - 8 + (6 + 8\sqrt{3})i.

STEP 15

Multiplying the denominators gives us (23+2i)(232i)=(23)2(2i)2=124i2=124(1)=12+4=16(-2\sqrt{3} + 2i)(-2\sqrt{3} - 2i) = (-2\sqrt{3})^2 - (2i)^2 = 12 - 4i^2 = 12 - 4(-1) = 12 + 4 = 16.

STEP 16

Therefore, z1z2=638+(6+83)i16=63816+6+8316i=3348+3+438i\frac{z_1}{z_2} = \frac{6\sqrt{3} - 8 + (6 + 8\sqrt{3})i}{16} = \frac{6\sqrt{3} - 8}{16} + \frac{6 + 8\sqrt{3}}{16}i = \frac{3\sqrt{3} - 4}{8} + \frac{3 + 4\sqrt{3}}{8}i.

STEP 17

We found that z1+z2=3232iz_1 + z_2 = -3 - 2\sqrt{3} - 2i, z1z2=8+63+(836)iz_1 \cdot z_2 = 8 + 6\sqrt{3} + (8\sqrt{3} - 6)i, and z1z2=3348+3+438i\frac{z_1}{z_2} = \frac{3\sqrt{3} - 4}{8} + \frac{3 + 4\sqrt{3}}{8}i.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord