Math  /  Algebra

Question13. Jika f(x)=2x25f(x)=2 x^{2}-5 dan g(x):3x+22g(x): \sqrt{3 x+22} maka (fg)1(3)(f \circ g)^{-1}(-3) adaiah...

Studdy Solution

STEP 1

1. Fungsi f(x)=2x25 f(x) = 2x^2 - 5 .
2. Fungsi g(x)=3x+22 g(x) = \sqrt{3x + 22} .
3. Kita diminta mencari nilai (fg)1(3)(f \circ g)^{-1}(-3).

STEP 2

1. Tentukan komposisi fungsi fg f \circ g .
2. Cari nilai x x yang membuat f(g(x))=3 f(g(x)) = -3 .
3. Temukan nilai (fg)1(3)(f \circ g)^{-1}(-3).

STEP 3

Tentukan komposisi fungsi fg f \circ g :
(fg)(x)=f(g(x))=f(3x+22) (f \circ g)(x) = f(g(x)) = f(\sqrt{3x + 22})
Substitusi g(x) g(x) ke dalam f(x) f(x) :
f(3x+22)=2(3x+22)25 f(\sqrt{3x + 22}) = 2(\sqrt{3x + 22})^2 - 5

STEP 4

Sederhanakan ekspresi:
f(3x+22)=2(3x+22)5 f(\sqrt{3x + 22}) = 2(3x + 22) - 5 f(3x+22)=6x+445 f(\sqrt{3x + 22}) = 6x + 44 - 5 f(3x+22)=6x+39 f(\sqrt{3x + 22}) = 6x + 39

STEP 5

Cari nilai x x yang membuat f(g(x))=3 f(g(x)) = -3 :
6x+39=3 6x + 39 = -3

STEP 6

Selesaikan persamaan:
6x+39=3 6x + 39 = -3 6x=339 6x = -3 - 39 6x=42 6x = -42 x=7 x = -7

STEP 7

Nilai (fg)1(3)(f \circ g)^{-1}(-3) adalah x=7 x = -7 .
Nilai (fg)1(3)(f \circ g)^{-1}(-3) adalah:
7 \boxed{-7}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord