Question12. Lisa vill spara till en ny cykel som kostar 10000 kronor. Hon öppnar ett sparkonto och sätter in samma belopp kronor i början av varje år under 5 år. Kontot har en årlig ränta på .
Frågor:
1. Hur mycket är den första insättningen värd efter 5 år, om räntan är per år?
2. Hur mycket är den andra insättningen värd efter 4 år?
3. Hur kan vi skriva en formel för det totala värdet av Lisas insättningar efter 5 år?
4. Om Lisa vill spara exakt 10000 kronor, vilket årligt belopp behöver hon sätta in?
Lös uppgiften med en geometrisk summa.
Studdy Solution
STEP 1
What is this asking?
Lisa wants to save \$10,000 for a bike by depositing the same amount of money, \(\$C\), every year for 5 years, with a 3% annual interest rate.
How much does she need to deposit each year?
Watch out!
Each deposit earns interest for a *different* number of years!
STEP 2
1. Calculate the value of the first deposit after 5 years.
2. Calculate the value of the second deposit after 4 years.
3. Derive the formula for the total value after 5 years.
4. Calculate the required annual deposit.
STEP 3
Alright, let's **start** with Lisa's **first deposit**, .
It sits in the bank for a full **5 years**, growing at a **3% annual interest rate**.
STEP 4
Remember, a **3% increase** means multiplying by .
STEP 5
After **one year**, the first deposit grows to .
After **two years**, it's .
See the pattern?
STEP 6
So, after **five years**, the **first deposit** will be worth .
STEP 7
Now, onto the **second deposit**, also .
This one stays in the bank for **4 years**.
STEP 8
Using the same logic as before, after **four years**, the **second deposit** grows to .
STEP 9
The **third deposit** earns interest for **3 years**, becoming .
The **fourth deposit** earns interest for **2 years**, becoming .
And the **fifth deposit** earns interest for just **1 year**, becoming .
STEP 10
To find the **total value**, we **add up** all the future values of the deposits:
STEP 11
We can **factor out** to get:
STEP 12
This is a **geometric series**!
We can use the formula for the sum of a geometric series:
where is the **first term**, is the **common ratio**, and is the **number of terms**.
STEP 13
In our case, , , and .
So, the **sum** inside the brackets is:
STEP 14
Therefore, the **total value** is approximately .
STEP 15
Lisa wants this **total value** to be .
So, we set up the equation:
STEP 16
To find , we **divide both sides** by :
STEP 17
Lisa needs to deposit approximately each year.
Was this helpful?