Math  /  Calculus

Question1. The life expectancy in a demographic model is a random variable with a distribution given by the density g(t)=μ1e100μeμt1[0,100](t)g(t)=\frac{\mu}{1-e^{-100 \mu}} e^{-\mu t} 1_{[0,100]}(t) for some parameter μ>0\mu>0. Determine the median and the mean life expectancy in this model.

Studdy Solution

STEP 1

1. We are given the probability density function (pdf) g(t)=μ1e100μeμt1[0,100](t) g(t) = \frac{\mu}{1-e^{-100 \mu}} e^{-\mu t} 1_{[0,100]}(t) .
2. The parameter μ\mu is positive (μ>0\mu > 0).
3. We need to determine both the median and the mean of the distribution.

STEP 2

1. Understand the structure of the pdf.
2. Determine the median of the distribution.
3. Calculate the mean of the distribution.

STEP 3

Understand the structure of the pdf:
The given pdf is a truncated exponential distribution on the interval [0,100][0, 100]. The function 1[0,100](t)1_{[0,100]}(t) indicates that the pdf is zero outside this interval. The term μ1e100μ\frac{\mu}{1-e^{-100 \mu}} is a normalizing constant ensuring the total probability integrates to 1 over [0,100][0, 100].

STEP 4

Determine the median of the distribution:
The median mm is the value such that the cumulative distribution function (CDF) equals 0.5.
0mg(t)dt=0.5 \int_0^m g(t) \, dt = 0.5
Substitute the pdf:
0mμ1e100μeμtdt=0.5 \int_0^m \frac{\mu}{1-e^{-100 \mu}} e^{-\mu t} \, dt = 0.5

STEP 5

Solve for the median:
Calculate the integral:
0meμtdt=[1μeμt]0m=1μ(eμm1) \int_0^m e^{-\mu t} \, dt = \left[ -\frac{1}{\mu} e^{-\mu t} \right]_0^m = -\frac{1}{\mu} (e^{-\mu m} - 1)
Set the equation:
μ1e100μ(1μ(eμm1))=0.5 \frac{\mu}{1-e^{-100 \mu}} \left( -\frac{1}{\mu} (e^{-\mu m} - 1) \right) = 0.5
Simplify:
1eμm1e100μ=0.5 \frac{1 - e^{-\mu m}}{1-e^{-100 \mu}} = 0.5
Solve for mm:
1eμm=0.5(1e100μ) 1 - e^{-\mu m} = 0.5(1-e^{-100 \mu})
eμm=10.5(1e100μ) e^{-\mu m} = 1 - 0.5(1-e^{-100 \mu})
eμm=0.5+0.5e100μ e^{-\mu m} = 0.5 + 0.5e^{-100 \mu}
μm=ln(0.5+0.5e100μ) -\mu m = \ln(0.5 + 0.5e^{-100 \mu})
m=1μln(0.5+0.5e100μ) m = -\frac{1}{\mu} \ln(0.5 + 0.5e^{-100 \mu})

STEP 6

Calculate the mean of the distribution:
The mean E[T]\mathbb{E}[T] is given by:
E[T]=0100tg(t)dt \mathbb{E}[T] = \int_0^{100} t \cdot g(t) \, dt
Substitute the pdf:
E[T]=0100tμ1e100μeμtdt \mathbb{E}[T] = \int_0^{100} t \cdot \frac{\mu}{1-e^{-100 \mu}} e^{-\mu t} \, dt

STEP 7

Solve for the mean:
Integrate by parts, let u=t u = t and dv=μ1e100μeμtdt dv = \frac{\mu}{1-e^{-100 \mu}} e^{-\mu t} \, dt .
du=dt du = dt v=[11e100μeμt] v = \left[ -\frac{1}{1-e^{-100 \mu}} e^{-\mu t} \right]
Apply integration by parts:
E[T]=[t1e100μeμt]0100+010011e100μeμtdt \mathbb{E}[T] = \left[ -\frac{t}{1-e^{-100 \mu}} e^{-\mu t} \right]_0^{100} + \int_0^{100} \frac{1}{1-e^{-100 \mu}} e^{-\mu t} \, dt
Calculate:
E[T]=(1001e100μe100μ+0)+11e100μ[1μeμt]0100 \mathbb{E}[T] = \left( -\frac{100}{1-e^{-100 \mu}} e^{-100 \mu} + 0 \right) + \frac{1}{1-e^{-100 \mu}} \left[ -\frac{1}{\mu} e^{-\mu t} \right]_0^{100}
E[T]=100e100μ1e100μ+1μ(1e100μ)(1e100μ) \mathbb{E}[T] = -\frac{100 e^{-100 \mu}}{1-e^{-100 \mu}} + \frac{1}{\mu(1-e^{-100 \mu})} (1 - e^{-100 \mu})
E[T]=1μ100e100μ1e100μ \mathbb{E}[T] = \frac{1}{\mu} - \frac{100 e^{-100 \mu}}{1-e^{-100 \mu}}
The median life expectancy is:
m=1μln(0.5+0.5e100μ) m = -\frac{1}{\mu} \ln(0.5 + 0.5e^{-100 \mu})
The mean life expectancy is:
E[T]=1μ100e100μ1e100μ \mathbb{E}[T] = \frac{1}{\mu} - \frac{100 e^{-100 \mu}}{1-e^{-100 \mu}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord