Math  /  Trigonometry

Question1. Simplify the expressions (a) sin2AcosA\frac{\sin 2 A}{\cos A}, (b) 2tanAcos2A2 \tan A \cos ^{2} A,
2. If cosA=23\cos A=-\frac{2}{3} find cos2A\cos 2 A.
3. Angle BB is acute and tanB=43\tan B=\frac{4}{3}. Find (a) sinB\sin B (b) cosB\cos B (c) sin2B\sin 2 B
4. If sinC=1/5\sin C=1 / \sqrt{5} find sin2C,cos2C\sin 2 C, \cos 2 C and tan2C\tan 2 C if (a) CC is acute, (b) CC is obtuse.

Studdy Solution

STEP 1

1. We are asked to simplify trigonometric expressions and find specific trigonometric values.
2. We will use trigonometric identities to simplify and calculate the expressions.
3. For finding values, we will use known identities and given values.

STEP 2

1. Simplify the expressions (a) and (b).
2. Calculate cos2A\cos 2A given cosA=23\cos A = -\frac{2}{3}.
3. Find sinB\sin B, cosB\cos B, and sin2B\sin 2B given tanB=43\tan B = \frac{4}{3}.
4. Calculate sin2C\sin 2C, cos2C\cos 2C, and tan2C\tan 2C for both acute and obtuse angles given sinC=15\sin C = \frac{1}{\sqrt{5}}.

STEP 3

(a) Simplify sin2AcosA\frac{\sin 2A}{\cos A}.
Use the double angle identity for sine: sin2A=2sinAcosA\sin 2A = 2 \sin A \cos A.
sin2AcosA=2sinAcosAcosA=2sinA\frac{\sin 2A}{\cos A} = \frac{2 \sin A \cos A}{\cos A} = 2 \sin A

STEP 4

(b) Simplify 2tanAcos2A2 \tan A \cos^2 A.
Use the identity tanA=sinAcosA\tan A = \frac{\sin A}{\cos A}.
2tanAcos2A=2(sinAcosA)cos2A=2sinAcosA2 \tan A \cos^2 A = 2 \left(\frac{\sin A}{\cos A}\right) \cos^2 A = 2 \sin A \cos A

STEP 5

Calculate cos2A\cos 2A given cosA=23\cos A = -\frac{2}{3}.
Use the double angle identity for cosine: cos2A=2cos2A1\cos 2A = 2 \cos^2 A - 1.
First, calculate cos2A\cos^2 A:
cos2A=(23)2=49\cos^2 A = \left(-\frac{2}{3}\right)^2 = \frac{4}{9}
Now, substitute into the identity:
cos2A=2(49)1=891=8999=19\cos 2A = 2 \left(\frac{4}{9}\right) - 1 = \frac{8}{9} - 1 = \frac{8}{9} - \frac{9}{9} = -\frac{1}{9}

STEP 6

Find sinB\sin B and cosB\cos B given tanB=43\tan B = \frac{4}{3}.
Use the identity tanB=sinBcosB\tan B = \frac{\sin B}{\cos B}.
Assume sinB=4k\sin B = 4k and cosB=3k\cos B = 3k.
Then tanB=4k3k=43\tan B = \frac{4k}{3k} = \frac{4}{3}.
Use the Pythagorean identity sin2B+cos2B=1\sin^2 B + \cos^2 B = 1:
(4k)2+(3k)2=1    16k2+9k2=1    25k2=1    k2=125    k=15(4k)^2 + (3k)^2 = 1 \implies 16k^2 + 9k^2 = 1 \implies 25k^2 = 1 \implies k^2 = \frac{1}{25} \implies k = \frac{1}{5}
Thus, sinB=4k=45\sin B = 4k = \frac{4}{5} and cosB=3k=35\cos B = 3k = \frac{3}{5}.

STEP 7

Calculate sin2B\sin 2B.
Use the double angle identity for sine: sin2B=2sinBcosB\sin 2B = 2 \sin B \cos B.
sin2B=2(45)(35)=2×1225=2425\sin 2B = 2 \left(\frac{4}{5}\right) \left(\frac{3}{5}\right) = 2 \times \frac{12}{25} = \frac{24}{25}

STEP 8

Calculate sin2C\sin 2C, cos2C\cos 2C, and tan2C\tan 2C given sinC=15\sin C = \frac{1}{\sqrt{5}}.
First, find cosC\cos C using sin2C+cos2C=1\sin^2 C + \cos^2 C = 1.
sin2C=(15)2=15\sin^2 C = \left(\frac{1}{\sqrt{5}}\right)^2 = \frac{1}{5}
cos2C=115=45\cos^2 C = 1 - \frac{1}{5} = \frac{4}{5}
(a) If CC is acute, cosC=45=25\cos C = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}}.
(b) If CC is obtuse, cosC=45=25\cos C = -\sqrt{\frac{4}{5}} = -\frac{2}{\sqrt{5}}.
Now calculate sin2C\sin 2C and cos2C\cos 2C:
sin2C=2sinCcosC=2×15×25=45\sin 2C = 2 \sin C \cos C = 2 \times \frac{1}{\sqrt{5}} \times \frac{2}{\sqrt{5}} = \frac{4}{5}
cos2C=2cos2C1\cos 2C = 2 \cos^2 C - 1
For acute CC:
cos2C=2(25)21=2×451=851=35\cos 2C = 2 \left(\frac{2}{\sqrt{5}}\right)^2 - 1 = 2 \times \frac{4}{5} - 1 = \frac{8}{5} - 1 = \frac{3}{5}
For obtuse CC:
cos2C=2(25)21=2×451=851=35\cos 2C = 2 \left(-\frac{2}{\sqrt{5}}\right)^2 - 1 = 2 \times \frac{4}{5} - 1 = \frac{8}{5} - 1 = \frac{3}{5}
Calculate tan2C\tan 2C:
tan2C=sin2Ccos2C=4535=43\tan 2C = \frac{\sin 2C}{\cos 2C} = \frac{\frac{4}{5}}{\frac{3}{5}} = \frac{4}{3}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord