Math  /  Algebra

Question1. ¿Qué recta tiene una pendiente de 32\frac{3}{2} ? (A) (B) (C) (D)
2. Halla la pendiente de la recta.
3. Selecciona todos los enunciados verdaderos sobre una relación lineal que también es una relación proporcional. \square La gráfica pasa por el origen. La gráfica no pasa por el origen. La constante de proporcionalidad se puede hallar usando  distancia horizontal  distancia vertical \frac{\text { distancia horizontal }}{\text { distancia vertical }} La pendiente es igual que la constante de proporcionalidad. \qquad La pendiente es igual que la tasa por unidad.
4. La gráfica muestra la distancia recorrida por un velocista de nivel olímpico, yy, a lo largo del tiempo durante una carrera, xx. Halla la pendiente de la recta y completa las siguientes oraciones. \square \square el tiempo en que corre el velocista La pendiente representa \square la distancia que recorre el velocista la velocidad del velocista en metros por segundo
5. Los puntos (80,20)(80,20) y (120,30)(120,30) forman una relación proporcional. ¿Cuál es la pendiente de la recta que pasa por estos puntos? (A) 14\frac{1}{4} (B) 4 (C) 10

Carrera de 100 metros

Studdy Solution

STEP 1

What is this asking? We need to find a line with a specific steepness, find the steepness of another line, identify true statements about proportional relationships, find the steepness of a line on a graph and interpret it, and calculate the steepness of a line passing through two given points. Watch out! Don't mix up horizontal and vertical distances when calculating steepness!
Also, remember that proportional relationships always go through the origin!

STEP 2

1. Find the Line
2. Calculate Steepness
3. Proportional Relationships
4. Sprinter's Speed
5. Proportional Points

STEP 3

We're looking for a line with a steepness, or *slope*, of 32\frac{3}{2}.
Remember, slope is "rise over run," or how much the line goes up divided by how much it goes across.

STEP 4

A slope of 32\frac{3}{2} means that for every **2** units we move to the right, the line goes up **3** units.
Look for this line among the choices!

STEP 5

To find the slope, we need two points on the line.
Pick two points that are easy to read from the graph.

STEP 6

Let's say we pick the points (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2).
The slope is calculated as y2y1x2x1\frac{y_2 - y_1}{x_2 - x_1}, which is the change in the vertical direction divided by the change in the horizontal direction.
Plug in your points and calculate!

STEP 7

A **proportional relationship** means that as one thing changes, the other changes by a constant factor.
This constant factor is also the slope!

STEP 8

Because proportional relationships always pass through the origin (0,0)(0,0), the first statement is **true**, and the second is **false**.

STEP 9

The constant of proportionality is found using vertical distancehorizontal distance\frac{\text{vertical distance}}{\text{horizontal distance}}, not the other way around, so the third statement is **false**.

STEP 10

The slope *is* equal to the constant of proportionality, and the slope *is* the rate per unit (how much *y* changes for every one unit change in *x*).
So, the last two statements are **true**!

STEP 11

Pick two points on the graph.
Let's say we choose (x1,y1)(x_1, y_1) and (x2,y2)(x_2, y_2).

STEP 12

Calculate the slope as y2y1x2y1\frac{y_2 - y_1}{x_2 - y_1}.
This slope represents the change in distance (vertical axis) divided by the change in time (horizontal axis).

STEP 13

Since distance divided by time is **speed**, the slope represents the sprinter's speed in meters per second!

STEP 14

We have two points: (80,20)(80, 20) and (120,30)(120, 30).
Let (80,20)(80, 20) be (x1,y1)(x_1, y_1) and (120,30)(120, 30) be (x2,y2)(x_2, y_2).

STEP 15

The slope is y2y1x2x1=302012080=1040=14\frac{y_2 - y_1}{x_2 - x_1} = \frac{30 - 20}{120 - 80} = \frac{10}{40} = \frac{1}{4}.

STEP 16

1. The line with a slope of 32\frac{3}{2} depends on the provided graphs.
2. The slope of the line depends on the provided graph.
3. True statements: The graph passes through the origin, the slope is equal to the constant of proportionality, and the slope is equal to the rate per unit.
4. The slope represents the sprinter's speed in meters per second.

The value of the slope depends on the provided graph.
5. The slope of the line passing through the points (80,20)(80, 20) and (120,30)(120, 30) is 14\frac{1}{4}.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord