Math  /  Calculus

Question(1 point) The region bounded by y=ex2,y=0,x=0y=e^{-x^{2}}, y=0, x=0, and x=1x=1 is revolved about the yy-axis. Find the volume of the resulting solid. Answer: \square

Studdy Solution

STEP 1

1. We are given the function y=ex2 y = e^{-x^2} .
2. The region is bounded by y=0 y = 0 , x=0 x = 0 , and x=1 x = 1 .
3. The region is revolved about the y y -axis.
4. We need to find the volume of the resulting solid.

STEP 2

1. Set up the integral for the volume using the method of cylindrical shells.
2. Evaluate the integral to find the volume.

STEP 3

The method of cylindrical shells is used when revolving around the y y -axis. The formula for the volume V V is:
V=2πabxf(x)dx V = 2\pi \int_{a}^{b} x \cdot f(x) \, dx
For this problem, f(x)=ex2 f(x) = e^{-x^2} , a=0 a = 0 , and b=1 b = 1 .

STEP 4

Substitute the given function and limits into the formula:
V=2π01xex2dx V = 2\pi \int_{0}^{1} x \cdot e^{-x^2} \, dx

STEP 5

To evaluate the integral, use substitution. Let u=x2 u = -x^2 , then du=2xdx du = -2x \, dx or 12du=xdx -\frac{1}{2} du = x \, dx .
Change the limits of integration: - When x=0 x = 0 , u=0 u = 0 . - When x=1 x = 1 , u=1 u = -1 .
The integral becomes:
V=2π01eu(12)du V = 2\pi \int_{0}^{-1} e^{u} \left(-\frac{1}{2}\right) \, du
V=π01eudu V = -\pi \int_{0}^{-1} e^{u} \, du

STEP 6

Evaluate the integral:
V=π[eu]01 V = -\pi \left[ e^{u} \right]_{0}^{-1}
V=π(e1e0) V = -\pi \left( e^{-1} - e^{0} \right)
V=π(1e1) V = -\pi \left( \frac{1}{e} - 1 \right)
V=π(1eee) V = -\pi \left( \frac{1}{e} - \frac{e}{e} \right)
V=π(1ee) V = -\pi \left( \frac{1 - e}{e} \right)
V=π(e1e) V = \pi \left( \frac{e - 1}{e} \right)
V=π(11e) V = \pi \left( 1 - \frac{1}{e} \right)
The volume of the resulting solid is:
π(11e) \boxed{\pi \left( 1 - \frac{1}{e} \right)}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord