Math  /  Calculus

Question1. Find the equations of the tangent line to the ellipse, (x+2)24+(y3)29\frac{(x+2)^{2}}{4}+\frac{(y-3)^{2}}{9} when x=3x=-3.

Studdy Solution

STEP 1

1. The ellipse is given by the equation (x+2)24+(y3)29=1\frac{(x+2)^2}{4} + \frac{(y-3)^2}{9} = 1.
2. We need to find the equation of the tangent line at a specific xx-coordinate, x=3x = -3.
3. The tangent line can be found using the derivative of the ellipse equation.

STEP 2

1. Find the point on the ellipse where x=3x = -3.
2. Differentiate the ellipse equation implicitly to find the slope of the tangent line.
3. Use the point-slope form to write the equation of the tangent line.

STEP 3

Substitute x=3x = -3 into the ellipse equation to find the corresponding yy-coordinate(s):
((3)+2)24+(y3)29=1\frac{((-3)+2)^2}{4} + \frac{(y-3)^2}{9} = 1
Simplify and solve for yy:
(1)24+(y3)29=1\frac{(-1)^2}{4} + \frac{(y-3)^2}{9} = 1 14+(y3)29=1\frac{1}{4} + \frac{(y-3)^2}{9} = 1 (y3)29=114\frac{(y-3)^2}{9} = 1 - \frac{1}{4} (y3)29=34\frac{(y-3)^2}{9} = \frac{3}{4} (y3)2=274(y-3)^2 = \frac{27}{4} y3=±272y-3 = \pm \frac{\sqrt{27}}{2} y=3±332y = 3 \pm \frac{3\sqrt{3}}{2}
The points on the ellipse are (3,3+332)(-3, 3 + \frac{3\sqrt{3}}{2}) and (3,3332)(-3, 3 - \frac{3\sqrt{3}}{2}).

STEP 4

Differentiate the ellipse equation implicitly with respect to xx:
ddx((x+2)24+(y3)29)=ddx(1)\frac{d}{dx}\left(\frac{(x+2)^2}{4} + \frac{(y-3)^2}{9}\right) = \frac{d}{dx}(1)
Apply the chain rule:
142(x+2)+192(y3)dydx=0\frac{1}{4} \cdot 2(x+2) + \frac{1}{9} \cdot 2(y-3) \cdot \frac{dy}{dx} = 0
Simplify:
x+22+2(y3)9dydx=0\frac{x+2}{2} + \frac{2(y-3)}{9} \cdot \frac{dy}{dx} = 0
Solve for dydx\frac{dy}{dx}:
2(y3)9dydx=x+22\frac{2(y-3)}{9} \cdot \frac{dy}{dx} = -\frac{x+2}{2} dydx=9(x+2)4(y3)\frac{dy}{dx} = -\frac{9(x+2)}{4(y-3)}

STEP 5

Calculate the slope of the tangent line at each point:
1. For the point (3,3+332)(-3, 3 + \frac{3\sqrt{3}}{2}):
dydx=9((3)+2)4(3+3323)\frac{dy}{dx} = -\frac{9((-3)+2)}{4(3 + \frac{3\sqrt{3}}{2} - 3)} =963= \frac{9}{6\sqrt{3}} =323= \frac{3}{2\sqrt{3}}
2. For the point (3,3332)(-3, 3 - \frac{3\sqrt{3}}{2}):
dydx=9((3)+2)4(33323)\frac{dy}{dx} = -\frac{9((-3)+2)}{4(3 - \frac{3\sqrt{3}}{2} - 3)} =963= -\frac{9}{6\sqrt{3}} =323= -\frac{3}{2\sqrt{3}}
Now, use the point-slope form to write the equation of the tangent line for each point:
1. For (3,3+332)(-3, 3 + \frac{3\sqrt{3}}{2}):
y(3+332)=323(x+3)y - \left(3 + \frac{3\sqrt{3}}{2}\right) = \frac{3}{2\sqrt{3}}(x + 3)
2. For (3,3332)(-3, 3 - \frac{3\sqrt{3}}{2}):
y(3332)=323(x+3)y - \left(3 - \frac{3\sqrt{3}}{2}\right) = -\frac{3}{2\sqrt{3}}(x + 3)
The equations of the tangent lines are:
1. y(3+332)=323(x+3)y - \left(3 + \frac{3\sqrt{3}}{2}\right) = \frac{3}{2\sqrt{3}}(x + 3)
2. y(3332)=323(x+3)y - \left(3 - \frac{3\sqrt{3}}{2}\right) = -\frac{3}{2\sqrt{3}}(x + 3)

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord