Math  /  Algebra

Question1+6x4y2y=3z9y=109\frac{1+\frac{6 x}{4-y}}{2 y}=\frac{3 z}{9 y}=\frac{10}{9}, then 3x+z2y+3y=\frac{3 x+z}{2 y+3 y}=

Studdy Solution

STEP 1

1. The given equation involves fractions and multiple variables.
2. We need to solve for the expression 3x+z2y+3y\frac{3x+z}{2y+3y}.
3. The equation 1+6x4y2y=3z9y=109\frac{1+\frac{6x}{4-y}}{2y}=\frac{3z}{9y}=\frac{10}{9} implies that both fractions are equal to 109\frac{10}{9}.

STEP 2

1. Solve for zz using 3z9y=109\frac{3z}{9y} = \frac{10}{9}.
2. Solve for xx using 1+6x4y2y=109\frac{1+\frac{6x}{4-y}}{2y} = \frac{10}{9}.
3. Substitute xx and zz into the expression 3x+z2y+3y\frac{3x+z}{2y+3y} and simplify.

STEP 3

Start by solving for zz from the equation 3z9y=109\frac{3z}{9y} = \frac{10}{9}.
First, simplify 3z9y\frac{3z}{9y} to z3y\frac{z}{3y}:
z3y=109\frac{z}{3y} = \frac{10}{9}
Cross-multiply to solve for zz:
9z=30y9z = 30y
Divide both sides by 9:
z=30y9=10y3z = \frac{30y}{9} = \frac{10y}{3}

STEP 4

Now solve for xx using 1+6x4y2y=109\frac{1+\frac{6x}{4-y}}{2y} = \frac{10}{9}.
Cross-multiply:
9(1+6x4y)=20y9(1+\frac{6x}{4-y}) = 20y
Distribute 9:
9+54x4y=20y9 + \frac{54x}{4-y} = 20y
Subtract 9 from both sides:
54x4y=20y9\frac{54x}{4-y} = 20y - 9
Multiply both sides by 4y4-y:
54x=(20y9)(4y)54x = (20y - 9)(4-y)
Solve for xx:
x=(20y9)(4y)54x = \frac{(20y - 9)(4-y)}{54}

STEP 5

Substitute xx and zz into the expression 3x+z2y+3y\frac{3x+z}{2y+3y}.
First, simplify the denominator:
2y+3y=5y2y + 3y = 5y
Substitute z=10y3z = \frac{10y}{3} and x=(20y9)(4y)54x = \frac{(20y - 9)(4-y)}{54} into the numerator:
3x+z=3((20y9)(4y)54)+10y33x + z = 3\left(\frac{(20y - 9)(4-y)}{54}\right) + \frac{10y}{3}
Simplify:
3x=(20y9)(4y)183x = \frac{(20y - 9)(4-y)}{18}
Combine terms:
3x+z=(20y9)(4y)18+10y33x + z = \frac{(20y - 9)(4-y)}{18} + \frac{10y}{3}
Simplify the fraction:
=(20y9)(4y)+60y18= \frac{(20y - 9)(4-y) + 60y}{18}
Now divide by 5y5y:
3x+z5y=(20y9)(4y)+60y185y\frac{3x + z}{5y} = \frac{\frac{(20y - 9)(4-y) + 60y}{18}}{5y}
Simplify further to find the final expression.
The final simplified expression is:
109\boxed{\frac{10}{9}}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord