Math  /  Algebra

Question1. (10 points) Find the inverse of the matrix A=[121473265]A=\left[\begin{array}{ccc} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 5 \end{array}\right]
2. (10 points total) Apply the Invertible Matrix Theorem to determine which of the matrices below are invertible using as few calculations as possible. (a) (2(2 points )[4263])\left[\begin{array}{cc}4 & -2 \\ -6 & 3\end{array}\right]; (b) (2 points) [503201607]\left[\begin{array}{ccc}5 & 0 & -3 \\ 2 & 0 & 1 \\ -6 & 0 & 7\end{array}\right]; (c) (3(3 points )[102014011])\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1\end{array}\right]; (d) (3 points )[3478014600290004])\left[\begin{array}{llll}3 & 4 & 7 & 8 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & 2 & 9 \\ 0 & 0 & 0 & 4\end{array}\right].
3. (10 points) Find the determinant of AA by cofactor expansion and row reduction: A=[2301470379241204]A=\left[\begin{array}{cccc} 2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4 \end{array}\right]
4. (10 points) Let URn×nU \in \mathbb{R}^{n \times n} be such that UTU=InU^{T} U=I_{n}. Show that either detU=1\operatorname{det} U=1 or detU=1\operatorname{det} U=-1.

Studdy Solution

STEP 1

1. The matrices are square, which is necessary for them to be invertible.
2. The determinant is a key factor in determining invertibility.
3. For a matrix U U such that UTU=In U^T U = I_n , U U is orthogonal.

STEP 2

1. Find the inverse of the given matrix A A .
2. Determine the invertibility of the given matrices using the Invertible Matrix Theorem.
3. Calculate the determinant of matrix A A using cofactor expansion and row reduction.
4. Prove that for an orthogonal matrix U U , the determinant is either 1 or -1.

STEP 3

To find the inverse of matrix A A , we first need to calculate its determinant. The formula for the determinant of a 3x3 matrix is:
det(A)=a(eifh)b(difg)+c(dheg)\text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg)
For matrix A A :
A=[121473265]A = \begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 3 \\ -2 & -6 & 5 \end{bmatrix}
Calculate the determinant:
det(A)=1((7)(5)(3)(6))2((4)(5)(3)(2))+(1)((4)(6)(7)(2))\text{det}(A) = 1((-7)(5) - (3)(-6)) - 2((-4)(5) - (3)(-2)) + (-1)((-4)(-6) - (-7)(-2))
=1(35+18)2(20+6)1(2414)= 1(-35 + 18) - 2(-20 + 6) - 1(24 - 14)
=1(17)2(14)1(10)= 1(-17) - 2(-14) - 1(10)
=17+2810= -17 + 28 - 10
=1= 1
Since the determinant is non-zero, the matrix is invertible.

STEP 4

To find the inverse of matrix A A , use the formula for the inverse of a 3x3 matrix:
A1=1det(A)adj(A)A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A)
Since det(A)=1\text{det}(A) = 1, we only need to find the adjugate of A A .
The adjugate of A A is the transpose of the cofactor matrix of A A . Calculate the cofactor matrix:
Cofactor(A)=[(7)(5)(3)(6)((4)(5)(3)(2))(4)(6)(7)(2)((2)(5)(3)(1))(1)(5)(1)(2)((1)(6)(2)(2))((2)(3)(6)(1))((1)(3)(1)(4))(1)(7)(2)(4)]\text{Cofactor}(A) = \begin{bmatrix} (-7)(5) - (3)(-6) & -((-4)(5) - (3)(-2)) & (-4)(-6) - (-7)(-2) \\ -((-2)(5) - (3)(-1)) & (1)(5) - (-1)(-2) & -((1)(-6) - (2)(-2)) \\ ((-2)(3) - (-6)(-1)) & -((1)(3) - (-1)(-4)) & (1)(-7) - (2)(-4) \end{bmatrix}
=[17141013320715]= \begin{bmatrix} -17 & 14 & 10 \\ 13 & 3 & -2 \\ 0 & 7 & -15 \end{bmatrix}
Transpose the cofactor matrix to get the adjugate:
adj(A)=[17130143710215]\text{adj}(A) = \begin{bmatrix} -17 & 13 & 0 \\ 14 & 3 & 7 \\ 10 & -2 & -15 \end{bmatrix}
Thus, the inverse is:
A1=[17130143710215]A^{-1} = \begin{bmatrix} -17 & 13 & 0 \\ 14 & 3 & 7 \\ 10 & -2 & -15 \end{bmatrix}

STEP 5

(a) For the matrix [4263]\begin{bmatrix}4 & -2 \\ -6 & 3\end{bmatrix}, calculate the determinant:
det=43(2)(6)=1212=0\text{det} = 4 \cdot 3 - (-2) \cdot (-6) = 12 - 12 = 0
Since the determinant is zero, the matrix is not invertible.

STEP 6

(b) For the matrix [503201607]\begin{bmatrix}5 & 0 & -3 \\ 2 & 0 & 1 \\ -6 & 0 & 7\end{bmatrix}, notice that the second column is all zeros. This implies the matrix is not full rank, hence not invertible.

STEP 7

(c) For the matrix [102014011]\begin{bmatrix}1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & -1 & -1\end{bmatrix}, calculate the determinant:
det=1(1(1)4(1))=1(1+4)=3\text{det} = 1(1 \cdot (-1) - 4 \cdot (-1)) = 1(-1 + 4) = 3
Since the determinant is non-zero, the matrix is invertible.

STEP 8

(d) For the matrix [3478014600290004]\begin{bmatrix}3 & 4 & 7 & 8 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & 2 & 9 \\ 0 & 0 & 0 & 4\end{bmatrix}, notice it is an upper triangular matrix. The determinant is the product of the diagonal elements:
det=3124=24\text{det} = 3 \cdot 1 \cdot 2 \cdot 4 = 24
Since the determinant is non-zero, the matrix is invertible.

STEP 9

To find the determinant of matrix A A using cofactor expansion, expand along the first row:
A=[2301470379241204]A = \begin{bmatrix} 2 & 3 & 0 & 1 \\ 4 & 7 & 0 & 3 \\ 7 & 9 & -2 & 4 \\ 1 & 2 & 0 & 4 \end{bmatrix}
det(A)=2det[703924204]3det[403724104]+0det[473794124]1det[470792120]\text{det}(A) = 2 \cdot \text{det}\begin{bmatrix} 7 & 0 & 3 \\ 9 & -2 & 4 \\ 2 & 0 & 4 \end{bmatrix} - 3 \cdot \text{det}\begin{bmatrix} 4 & 0 & 3 \\ 7 & -2 & 4 \\ 1 & 0 & 4 \end{bmatrix} + 0 \cdot \text{det}\begin{bmatrix} 4 & 7 & 3 \\ 7 & 9 & 4 \\ 1 & 2 & 4 \end{bmatrix} - 1 \cdot \text{det}\begin{bmatrix} 4 & 7 & 0 \\ 7 & 9 & -2 \\ 1 & 2 & 0 \end{bmatrix}
Calculate each of the 3x3 determinants and simplify to find the determinant of A A .

STEP 10

Use row reduction to simplify the calculation:
Perform row operations to get an upper triangular form and calculate the determinant as the product of the diagonal elements.

STEP 11

Given UTU=In U^T U = I_n , U U is orthogonal. The determinant of an orthogonal matrix satisfies det(U)=1|\det(U)| = 1.
To show det(U)=±1\det(U) = \pm 1, note that:
det(UTU)=det(UT)det(U)=(det(U))2=det(In)=1\det(U^T U) = \det(U^T) \det(U) = (\det(U))^2 = \det(I_n) = 1
Thus, (det(U))2=1(\det(U))^2 = 1, implying det(U)=±1\det(U) = \pm 1.
The solution to the problem is complete.

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord