Math  /  Geometry

QuestionZADANIE 5 Wyznacz pole obszaru ograniczonego krzywą: f(x)=x1f(x)=\sqrt{x-1} oraz prostymi x=10;y=1x=10 ; y=1 f(x)=x1x=10y=11=x121=x1\begin{aligned} f(x) & =\sqrt{x-1} \quad x=10 \quad y=1 \\ 1 & =\left.\sqrt{x-1}\right|^{2} \\ 1 & =|x-1| \end{aligned}

Studdy Solution
Oblicz pole obszaru za pomocą całki oznaczonej.
Pole obszaru to: 210(x11)dx \int_{2}^{10} (\sqrt{x-1} - 1) \, dx
Rozdziel całkę: 210x1dx2101dx \int_{2}^{10} \sqrt{x-1} \, dx - \int_{2}^{10} 1 \, dx
Oblicz pierwszą całkę: Podstawienie u=x1 u = x-1 , wtedy du=dx du = dx i zmieniając granice całkowania: dla x=2 x = 2 , u=1 u = 1 ; dla x=10 x = 10 , u=9 u = 9 .
19udu=[23u3/2]19 \int_{1}^{9} \sqrt{u} \, du = \left[ \frac{2}{3} u^{3/2} \right]_{1}^{9} =23(93/213/2) = \frac{2}{3} (9^{3/2} - 1^{3/2}) =23(271) = \frac{2}{3} (27 - 1) =23×26 = \frac{2}{3} \times 26 =523 = \frac{52}{3}
Oblicz drugą całkę: 2101dx=[x]210=102=8 \int_{2}^{10} 1 \, dx = [x]_{2}^{10} = 10 - 2 = 8
Pole obszaru: 5238=523243=283 \frac{52}{3} - 8 = \frac{52}{3} - \frac{24}{3} = \frac{28}{3}
Pole obszaru ograniczonego to:
283 \boxed{\frac{28}{3}}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord