Math  /  Calculus

QuestionWhich of the following series converges conditionally? (A) 132+(32)2(32)3++(32)n1+1-\frac{3}{2}+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{3}+\cdots+\left(-\frac{3}{2}\right)^{n-1}+\cdots (B) 121!+222!233!++(2)1(n1)!+1-\frac{2}{1!}+\frac{2^{2}}{2!}-\frac{2^{3}}{3!}+\cdots+\frac{(-2)^{-1}}{(n-1)!}+\cdots (C) 112+1314++(1)13+1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\cdots+\frac{(-1)^{-1}}{\sqrt{3}}+\cdots (D) 115+(15)2(15)3++(15)n1+1-\frac{1}{5}+\left(\frac{1}{5}\right)^{2}-\left(\frac{1}{5}\right)^{3}+\cdots+\left(-\frac{1}{5}\right)^{n-1}+\cdots

Studdy Solution
Determine which series converges conditionally:
Series (C) converges conditionally.
The series that converges conditionally is C \boxed{\text{C}} .

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord